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Abstract

How many shuffles are needed to mix up a deck of cards? This question may be
answered in the language of a random walk on the symmetric group, Ssp. This
generalises neatly to the study of random walks on finite groups — themselves
a special class of Markov chains. FErgodic random walks exhibit nice limiting
behaviour, and both the quantitative and qualitative aspects of the convergence
to this limiting behaviour is examined. A particular qualitative behaviour — the
cut-off phenomenon — occurs in many examples. For random walks exhibiting
this behaviour, after a period of time, convergence to the limiting behaviour is

abrupt.

The aim of this thesis is to present the general theory of random walks on
finite groups, with a particular emphasis on the cut-off phenomenon. It is an
open problem to determine which random walks exhibit the cut-off phenomenon.
There are various formulations of the cut-off phenomenon; the original — that of
variation distance cut-off — is considered here. At present, progress is made on
this problem in a case-by-case basis. There are general techniques for attacking a
particular case — and many of these are presented here — but there are no truly

universal results.

Throughout the thesis, examples are used to demonstrate the theory. The
last chapter presents some new heuristics developed by the author in the course

of his studies.
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Chapter 1
Introduction

The question, how many shuffles are required to mix up a deck of cards , does not
appear to have an obvious mathematical answer. Before any kind of analysis can

be done, the terms deck of cards, shuffle and mized up need a precise mathematical

realisation.

Consider a fresh deck of cards; in the order, KO,QOQ,..., AV, K#, ..., Ad. In
this order, each card can be labeled 1,...,52, and given any arrangement of the
deck, a permutation o : {1,...,52} — {1,...,52} can encode the arrangement:

< 1 2 ... B2 )
(1.1)
o(l) o(2) --- o(52)

In the language of group theory, the deck of cards may be modelled by Sss.

A shuffle, meanwhile, takes the deck, and, independently' of the arrangement of
the deck, permutes the cards. For example, a perfect cut shuffle takes off the top
half of the cards and places it under the bottom half of the deck is a shuffle. It
is not hard to see that a shuffle is a function S : S5; — Ss2, whose action is by
multiplication by some og € Ss9; i.e. S(0) = oggo. Indeed the perfect-cut shuffle
is realised by multiplication by (1,27)(2,28)--- (26, 52).

Now the question of when is a deck mixed-up needs to addressed. In the first
instance, it is always assumed that the deck started in some known order; e.g.

the one given above. Secondly, when is a deck totally random?

Yin general (!), one doesn’t shuffle while looking at the labels on the cards. To be techmical,
not all functions S : Ssa — Sso are considered shuffles. For example, the ‘shuffle’ swapping the
positions of AQ and A# is not a shuffle.



If one is handed a deck of cards, face down, and if each possible order of
the cards is equally possible then the deck is considered random. It should be
clear from group theory, that if any perfect shuffle is repeated, then the deck will
never get random in this sense. If the deck is always shuffled by og, then after
k shuffles the deck will be in the order of. Hence, to get random, there has to
be some randomisation in how the deck is shuffled. As an example of a suitable
randomisation, pick two distinct cards at random?, and let the shuffle swap the
positions of these two cards. Assuming now that after a number of shuffles, every
arrangement of the deck is approximately equally likely, various notions of ‘how
close’ the deck is to random may be formulated, and a clear definition of mixed-up

may be given.

Consider the riffle shuffle: at each step the deck is cut into two packs which
are then riffled together. A model for such shuffles on n rather than just 52 cards,
due to Gilbert, Shannon and (independently) Reeds, was completely analysed in a
remarkable paper by Bayer & Diaconis [6]. In this paper, a phenomenon called the
cut-off phenomenon was proven to occur for the riffle shuffle. Namely, for n large,
the deck is far from random in a certain sense after less than t, = (3logyn)/2
shuffles, but close to random after more than ¢, shuffles: the transition from
order to random takes place at about ¢, steps and it makes sense to say it takes
t,, steps to mix-up the cards. For the case n = 52, seven shuffles are necessary

and sufficient to mix up the cards.

Random walks on finite groups generalise card shuffling by replacing the sym-
metric group by any finite group. This thesis aims to present the general theory
of random walks on finite groups, with an emphasis on the cut-off phenomenon.
In particular, care has been shown to take no liberties with assumptions, and all
the ‘obvious’ elements of the theory are revisited and questioned. For example,
Theorem 1.3.2 is standard in the field but almost all references do not carry the
non-trivial proof. The questioning of ‘obvious’ facets of the theory allowed some

new perspectives.

2to be careful maybe two distinct card positions, e.g. top card, second card, etc.
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In making the thesis modest, some interesting and often powerful aspects of
the theory have been omitted. The aforementioned riffle shuffle was not studied
— neither was the familiar over-hand shuffle. In fact, in terms of the development
of the subject, the riffle shuffle is a pathological example. Despite its apparent
complexity, the shuffle has been more or less completely understood and analysed
by Bayer & Diaconis, albeit through some deeper mathematics than the subject
usually requires.

The Diaconis-Fourier theory is an attractive machinery in the field that is pre-
sented here. However it is only applied in two Abelian examples: neither of which
needed require the full theory anyway. Its greatest success has been in the anal-
ysis of the random transposition shuffle, a random walk on the symmetric group,
however the representation theory of the symmetric group is not covered here.
Diaconis [12] is an excellent reference. A great survey of techniques, including
those not mentioned here is [27].

There are a number of interesting generalisations of random walks on groups,
such as to homogenous spaces and Gelfand pairs. These are not covered here:

Ceccherini-Silberstein et al [7] is an excellent book and pursues these areas.

Despite these restrictions, a great variety of mathematical techniques are used.
Probability, measure theory, representation theory, functional analysis, geometry
and, naturally, group theory is used throughout the thesis. The cut-off phe-
nomenon is not just a theory for random walks on groups, it occurs for some
more general Markov chains also. A breakthrough in the theory of random walks
on groups will surely have an impact for the Markov chain community. In his
introduction, Chen [8] discusses a few examples where the existence of a cut-off

has a significant impact for applications.

This first chapter introduces the general discrete time Markov chain theory on
a finite set. Random walks on groups are introduced as a special class of Markov
chains and necessary and sufficient conditions for a random walk to ‘get random’
are developed.
Chapter 2 discusses what it means for a random walk to be ‘close to random’.
A number of measures of closeness to random are introduced. A distinguished

distance, namely the variation distance, is identified as the conventional measure

8



of closeness to random in this study. An interpretation of variation distance by
Switzer is shown to be correct here. Much of the spectral analysis of the stochas-
tic operator is done in this chapter and this yields upper bounds on the distance
to random — many related to the eigenvalues of the associated stochastic oper-
ator. Next techniques for finding lower bounds on the distance to random are
discussed. Finally, methods of procuring bounds for these eigenvalues via the
geometry of the group are presented.

Chapter 3 develops the representation theory of finite groups. In conjunction with
Fourier analysis for finite groups, this machinery, so well pioneered by Diaconis,
is a powerful technique for generating bounds on the distance to random. Here
the full, general, theory is developed. Two Abelian examples, the simple walk on
the circle and the simple walk with loops on the n-Cube, are analysed.

Chapter 4 introduces the cut-off phenomenon and its formulation. In particular,
it is seen that the phenomenon is defined with respect to the limiting behavior
of a family of random walks on groups, {G, : n € N}, as the size of the group
increases to infinity (n — oc). There is a discussion of the present understanding
of the cut-off phenomenon, and reasons for its existence are mentioned.

Chapter 5 presents some probabilistic methods for bounding the distance to ran-
dom. These powerful methods — strong uniform times and coupling — are
occasionally very transparent and help explain why cut-offs occur.

Finally in Chapter 6 some new viewpoints and generalisations are presented. Al-
though the motion of a particle in a random walk is random (in general, after
k steps the position of the particle is unknown), its distribution after k steps is
deterministic. Thus the random walk has the structure of a dynamical system.
Here an attempt is made to develop this further. Also the question of whether or
not the invertibility of the stochastic operator has implications for a random walk
is addressed. A study of invertible stochastic operators is, as far as this author
knows, non-existent in the literature. A few basic properties and questions are
explored. Finally, a conjecture of the author, namely that if the stochastic oper-
ator is invertible, then the cut-off phenomenon will not be exhibited, is explored

and disproved.



1.1 Markov Chain Theory

Essentially, a Markov Chain is a construction of a mathematical model for a
certain type of discrete motion of a particle in a space. The particle begins at
some initial point and at certain times ¢1,%s,... moves to another point in the
space chosen ‘at random’. The probability that the particle moves to a certain
point y at a time ¢ is dependent only upon its position x at the previous time.

This is the Markov property.

To formulate, let X be a finite set. Denote by M,(X) the probability measures
on X. Let 0” be the element of M,(X) which puts a measure of 1 on = (and
zero elsewhere). These Dirac measures, {0° : x € X}, are the canonical basis
for RIl O M,(X). A probability measure v € M,(X) is strict if v(x) > 0,
for all z € X. Denote by F(X) the complex functions on X and L(V) the
linear operators on a vector space V. The similarly defined Dirac functions,
{6, : x € X}, are the canonical basis for F(X). With respect to this basis
P € L(F(X)) has a matrix representation [p(z,y)]s,. P € L(F (X)) is a stochastic

operator if:

(i) p(z,y) >0, Vz,y

(i) >, p(x,y) =1, Va (row sum is unity)

Given v € M,(X), astochastic operators P actson v as vP(x) = 3> v(y)p(y, x).
Stochastic operators are readily characterised without using matrix elements as
being M,(X)-stable in the sense that M,(X)P C M,(X) if and only if P is a
stochastic operator. It is an immediate consequence that if P and () are stochas-

tic, then so is PQ.
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1.1.1 Definition

Let X be a finite set and v € M,(X), P a stochastic operator on X, and (Y, A, p1)
a probability space. A sequence {&;}}_, of random variables & : Y — X are a

Markov Chain with initial distribution v and stochastic operator P, if
(1) w(éo = z0) = v(20).

(i) p(ps1 = Try1 | &0 = o, ..., &k = Tk) = p(Tk, Tpps1),

assuming p(&o = o, ..., & = xx) > 0.

If v = 6% in (i) the Markov chain is said to start deterministically at x.
Condition (ii) is the Markov property. Subsequent references to a Markov Chain
¢ refer to a Markov Chain ({&}7_,, P,v).

In terms of existence, given v and P, let

Vi=X""=XxXx-xX

n—+1 copies

Define & : Y — X by & (o, ..., x,) = xx and

p(xo, ..., xn) = v(xe)p(zo, 1) -+ P(Tn_1, Tin)-

Then p € M,(Y'), and £ is a Markov Chain for v and P.

1.1.2 Example: Two State Markov Chain

Consider the set X = {1,2} and v € M,(X). Suppose the probability of going
from 1 to 2 is p and the probability of going from 2 to 1 is ¢. Then the two state

Markov chain has stochastic operator

for p,q € [0,1].

11



Figure 1.1: A graphical representation of the two state Markov chain.

1.2 Ergodic Theory

Ergodic theory is concerned with the longtime behaviour of a Markov chain.
A central question is for a given chain whether or not the &, display limiting

behaviour as k — oo? If ‘¢’ exists, what is its distribution?

One possible debarring of the existence of a limit is periodicity. Consider a
Markov chain £ on a set X = XyUX; with XqoNX; = () and neither of the X; = 0
for ¢ = 1,2. Suppose £ has the property that &y € X;, for k € Ny, ¢ = 0, 1.
Then ‘¢, cannot exist in the obvious way. In a certain sense £ must be aperiodic

for limiting behaviour to exist.

Suppose £ is a Markov chain and the limit vP" — 6 exists. Loosely speaking,

after a long time N, £y has distribution u(&y) ~ 6:

vPN ~ 9
= vP NP ~ 0P

= PNt 9P

But vPN*! ~ 0 also and hence P ~ 6. So if ‘¢, exists then its distribution
f may have the property 8P = 6. Such a distribution is said to be a station-
ary distribution for P. Relaxing the supposition on ‘€.’ existing, do stationary
distributions exist? Clearly they are left eigenvectors of eigenvalue 1 that have

positive entries summing to 1.

12



If k(z) € F(X) is any constant function then Pk = k so k is a right eigenfunc-

tion of eigenvalue 1. Let u be a left eigenvector of eigenvalue 1. By the triangle

inequality, [u(2)| = | 2, u(w)p(y, 2)| < 5, [u()lp(y, ). Now

> lu(z) <> (Z |U(y)|p(y,Z)> = Ju(y)] (ZP(%Z)) = fu(y)]
zeX zeX \yeX yeX zeX yeX

=1

Hence the inequality is an equality so ), (Zy lu(y)|p(y, z) — ]u(z)|) = 0 is
a sum of non-negative terms. Hence |u|P = |u|, and by a scaling, m(x) :=

lu(z)]/ 32, [u(y)], is a stationary distribution.

How many stationary distributions exist? Consider Markov Chains ¢ and (

on disjoint finite sets X and Y, with stochastic operators P and (). The block

P 0
(70 »

is a stochastic operator on X UY. If m and @ are stationary distributions for P

and @) then

matrix

¢ = (cm, (1 —¢)0), c€]0,1]

is an infinite family of stationary distributions for R. The dynamics of this walk
are that if the particle is in X it stays in X, and vice versa for Y (the graph
of R has two disconnected components). This example shows that, in general,
the stationary distribution need not be unique. Rosenthal [26] shows that a
sufficient condition for uniqueness is that the Markov chain & has the property
that every point is accessible from any other point; i.e. for all x,y € X, there
exists 7(z,y) € N such that pU@¥)(z y) > 0. A Markov chain satisfying this

property is said to be irreducible.

So for the existence of a unique, stationary distribution it may be sufficient
that the Markov chain is both aperiodic and irreducible. Call a stochastic oper-

ator P ergodic if there exists ng € N such that

p("‘))(aj,y) >0, Ve,ye X

13



In fact, ergodicity is equivalent to aperiodic and irreducible (see [26]* Lemma
8.3.9), and the following theorem asserts that it is both a necessary and sufficient
condition for the existence of a strict distribution for ‘¢..’. These precluding
remarks suggest the distribution of ‘€., is in fact stationary and unique, and
indeed this will be seen to be the case. A nice, non-standard proof of this well-

known theorem is to be found in [7].

1.2.1 Markov Ergodic Theorem

A stochastic operator P is ergodic if and only if there exists a strict m € M,(X)
such that
lim p'™(z,y) = (y), Vo, y € X (1.3)

n—oo

In this case w is the unique stationary distribution for P e

In the special class of ergodic Markov chains, (1.3) indicates that statistically
speaking, the system that evolves for a long time ‘forgets’ its initial state. Another
special class of Markov chains are reversible Markov chains. A stochastic operator

P is reversible if there exists a strict m € M,(X) such that

m(z)p(z,y) = ply, )m(y), Vo,ye X (1.4)

This is equivalent to D,P = PTD, where D, is the diagonal matrix with
(x, x)-component 7(z). Suppose further that P is ergodic and (1.4) holds for some
strict m € M,(G). A quick calculation shows that then 7 is the unique, strict,
stationary distribution. The definition of a reversible chain appears at odds with
our interpretation of what reversible means. However, it may be shown (see [7])

that the condition is equivalent to

(i) p(z,y) > 0= p(y,r) >0

(ii) for alln € N, xg,21,...,2, € X,

p(zo, 21)p(21,%2) * + P(Tn—1, Tn )P(Tn, To) = P(T0, Tn)P(Tn; Tn1) - - - P(T1, To)

3although aperiodic hasn’t been defined here

14



Figure 1.2: For a reversible Markov Chain, the probability of going in a cycle

from 0 — 0 is equal for clockwise and anti-clockwise orientations.

1.3 Random Walks on Finite Groups

1.3.1 Introduction

A particularly nice class of Markov chain is that of a random walk on a group. The
particle moves from group element to group element by choosing an element h of
the group ‘at random’ and moving to the product of h and the present position
g, i.e. the particle moves from g to hg. To avoid trivialities, the random walk
on the trivial group is not considered. Naturally the group structure of the walk
induces strong symmetry conditions: this allows the generation of much stronger

results than that of general Markov chain theory.

To formulate, let G be a finite group of order |G| and identity e. Let v €
M,(G) and (Y, ) be a probability space. Let {(x}7_, : (Y, ) — G be a sequence
of i.i.d. random variables with distributions p(¢o = go) = 0°(go) and u({ = g) =
v(g). The sequence of random variables {&;}7_, : (Y,pu) = G

&k = CuGr—1- - G1Go (1.5)

is a right-invariant random walk on G.

15



This construction makes ¢ into a Markov Chain on GG with initial distribution
0¢ and stochastic operator P = p(s,t) is induced by the driving probability, v:
p(s,t) = v(ts™'). The random walk is called right invariant because p(s,t) =

p(sh,th). This is obvious as

p(sh,th) = v(th(sh)™) = v(ts™') = p(s, 1)

Example: Card Shuffling

Card shuffling provides the motivation for the study of random walks on groups
and remains the canonical example. Everyday shuffles such as the overhand
shuffle or the riffle shuffle, as well as simpler but more tractable examples such as
top-to-random or random transpositions all have the structure of a random walk
on Ss2. Each shuffle may be realised as sampling from a probability distribution
v € M,(Ss2). For example, consider the case of repeated random transpositions.
A random transposition consists chooses two cards at random (with replacement)
from the deck and swapping the positions of these two cards. Suppose without
loss of generality that the first card chosen is the ace of spades. The probability
of choosing the ace of spaces again is 1/52. Swapping the ace the spades with
itself leaves the deck unchanged. The choice of the first card is independent hence
the probability that the shuffle leaves the deck unchanged is 1/52. What is the
probability of transposing two given (distinct) cards? Consider, again without
loss of generality, the probability of transposing the ace of spades and the ace
of hearts. There are two ways this may be achieved: choose A#-AQ or choose
AQ-AM. Both of these have probability of 1/52%. Any other given shuffle (not
leaving the deck unchanged or transposing two cards) is impossible. Hence the

shuffle may be modelled as sampling by

1/52 ifs=e
v(s) == 2/52? if sis a transposition
0 otherwise

16



It is a straightforward calculation to show that the stochastic operator of a
random walk on a group is doubly stochastic — column sums are also 1. As a
corollary, the uniform distribution, 7(g) = 1/|G|, is a strict, stationary distri-
bution. To keep terminology to a minimum, the uniform distribution shall be
referred to as the random distribution and conversely m will refer to this random
distribution.

If ¥ = supp (v), then, in general, & € ¥* however if (¥) = G and e € ¥ then
certainly X¥ C !, for any k < [. Indeed:

{e}=x"crxcx?c...cxf'=@q

where T is called the cover time of the walk. In this case P is ergodic with
ng = 1. From Section 1.2, it is known that ‘¢,  exists in a nice way if the
stochastic operator P is ergodic. Conveniently, this condition may be translated
into a condition on the driving probability on the group, v. The below theorem
falls under the category of a ‘folklore theorem’ in that almost all references refer
to the proof in older hard-to-source references — if at all. A proof outline is given

by Fountoulakis [19] in his lecture notes but here a full proof is given.

1.3.2 Ergodic Theorem for Random Walks on Groups

Let G be a group and v € M,(G) with support 3. A right-invariant random walk
on G is ergodic if and only if X ¢ K for any proper subgroup K of G and ¥ ¢ Hx
for any coset of any proper normal subgroup H < G.

In this case, w is the unique, strict stationary distribution for P.

Proof. Assume ¥ C K a proper subgroup of G. (¥) C K by closure in K; hence
& € K, forall k € N. Let, s € K,t ¢ K. Now for all n € N, p™(s,t) = 0.
Hence P is not ergodic.

Assume ¥ C Hzx for some coset of a proper normal subgroup H<1G. Now &, € He
and & € HrxHe = Hzx, so by induction , € (Hz)” = Hz", for all n € N. Let
n € N. Let s € G\Hza": p™(e,s) = 0. Hence P is not ergodic.

Assume now ¥ ¢ K a proper subgroup of G and ¥ ¢ Hx for any coset of any
proper normal subgroup H < G.

17



Clearly the inclusions ¥ C (X) C G hold with () a subgroup of G. By assump-
tion ¥ does not lie in a proper subgroup hence (X) = G. Hence for all s,t € G,
there exists n(s,t) € N such that p™)) (s ¢) > 0.

Let Ly(e) := {(04, .-, 0iy) 1€ =04 -+ Oiy 504, ... 04, Fe,n—m < N—1;04, €

Y} be the set of all distinct minimal Y-presentations of e.

Claim 1: If [Ly(e)] = 1, G = Zjg and X is in a coset of a proper normal
subgroup.

Proof. 1f |Ly,(e)| = 1 there is only one minimal Y-presentations of e. But ¢°"

2) are two distinct minimal Y-presentations of e. Hence o1 = 09. Hence

and o2
¥ = {o}. But (X) = G, hence G is cyclic and in particular ¥ C {e}o the coset
of the proper normal subgroup {e}

Claim 2: Assume |Lx(e)| > 1. If ¥ is not contained in a coset of a proper
normal subgroup of GG, then, where L is the set of word lengths of the elements
of Ly(e), gcd L = 1.

Proof. Suppose gcd L = k > 1. Then every Y-presentation of e has length 0 mod
k. Let Ny C G be the subgroup generated by all elements of G with a length 0
mod k X-presentation. Clearly e € Ni. Let t € G. Suppose ¢ has a length p mod
k Y-presentation. Then ¢! has a length —p mod k X-presentation since ¢t 't = e
has length 0 mod k X-presentation. Let n € Ni. By definition, n has a length 0
mod k Y-presentation and so t~'nt has a length 0 mod & X-presentation. So N,

is normal.

Let 0 € ¥ and suppose ¢ € Ni. Then

oo t=e= (04 aiqk)(ajl e Ojy)
that is e would have a length —1 mod k Y-presentation, which is not allowed.
Hence o & Ni, so Nj is a proper normal subgroup of G.
Let 0y € ¥. Then oo, L' e N, for all 0 € ¥ as Y-presentations of any o~ ! have
length —1 mod k. Hence ¥ C Nyo; and this contradicts the assumption on 3.
Hence ged Ly(e) =1 o

18



Let S be the set of lengths of all* distinct X-presentations of e. As L C S,

ged S = 1. Hence there exist ly,...,l, € S, k; € Z such that [22]:
kily + -+ kply, =1

Let [ € S and n(e, s) as above.
Let

and

no(e, s) =IM + n(e, s)

If n > ng(e, s), and letting

n=nle,s)+rl+a

where 0 < a <!l and r > M. Now as

ikllz =1 s and ill|k2‘ = M,
i=1 i=1

n may be written

n=n(e,s)+rl—IM+1 (Z li\ki|) +a (Z kl)
=1 =1

[ J/

=0

m

= (r—= M)+ (Uk;| + ak;)l; + n(e, s)

=1

where the (I|k;| + ak;) > 0. Let x,y, A € N. Note that the probability of going

from s to t in x + Ay steps is certainly greater than going from s to ¢ in x steps

and returning to t every y steps A times:
X x A
P (s, 1) > p(s, 1) (pV(, 1))

Hence as [,1; € S (so that p(e,e) > 0) and p™==) (e, s) > 0;

P(e,5) > (p0e ) [H <p<“><e,e>>”’““k1 PN (e, 5) > 0

=1

4not just minimal presentations

19
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Now let ng be the maximum of ng(e, s) as s runs over G. Let s,t € G. By right

invariance
p™(s,t) = p™(e,ts™) >0, for n > ny

Hence P is ergodic e

20



Chapter 2

Distance to Random

2.1 Introduction

The previous chapter demonstrates that under mild conditions a random walk
on a group converges to the random distribution. Therefore, initially the walk is
‘far’ from random and eventually the walk is ‘close’ to random. An appropriate
question therefore, is given a control € > 0, how large should k be so that the walk
is e-close to random after k£ steps? The first problem here is to have a measure
of ‘close to random’. This chapter introduces a few measures of ‘closeness to
random’, discusses the relationship between them and presents some bounds. In

the rest of the work, all walks are assumed ergodic unless stated otherwise.

Let v and p € M,(G). The convolution of v and p is the probability

vrp(s) =Y wist " )u(t). (2.1)

teG

*n+l.— 1w p*™ . The distribution of a random walk after one

In particular denote v
step is given by v. If s € GG, then the walk can go to s in two steps by going to
some t € G after one step and going from there to s in the next. The probability
of going from ¢ to s is given by the probability of choosing st™!, i.e. v(st™!). By
summing over all intermediate steps ¢ € G, and noting that v % 0 = v, it is seen
that if {&,}7_, is a random walk on G driven by v, then v** is the probability
distribution of &,. In terms of the stochastic operator induced by v € M,(G) ,

P, given any u € M,(G), uP = v * p.
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2.2 Measures of Randomness

*k 5 7 thus a measure of closeness to

The preceding remarks indicate that v
random can be defined by defining a metric on M,(G) or putting a norm on
RI¢I D M,(G). Then a precise mathematical question may be asked: given e > 0,
how large should k be so that [[1** — 71| < € or d(v**,m) < &? Straightaway
it is clear that any of the p-norms may be used. Also multiples of p-norms
may be used, for example, Diaconis & Saloff-Coste [15] introduce the distance

dy(k) = |G['7P || — ],

Another notion of closeness to random, although not a metric, is that of

separation distance:
1 *k
s(k) == |G| max {_\Gl —v (t)} (2.2)

Clearly s(k) € [0,1] with s(k) = 1 if and only if v**(g) = 0 for some g; and
s(k) = 0 if and only if v** = 7. The separation distance is submultiplicative in
the sense that s(k+1) < s(k)s(l), for k,1 € N [4]. This immediately implies that
s(nk) < [s(k)]™. Suppose however that v**(g) = 0 for some g € G. Then s(k) = 1
and s(nk) < 1 which is useless. However because the walk is ergodic there exists a

¥ is supported on the entire group. Let L := min{v*"*(s) : s € G'}.

time ng when v*
Then s(ng) = (1 — |G|L), thence s(kng) < (1 — |G|L)*. An example where this
bound is easily applied is the simple walk on Z,, n odd, where v(+1) = 1/2.

Then ng = n — 1, L = 2" and thence s(k(n — 1)) < (1 —n.2'7")%

A further measure of randomness is that of the average Shannon Entropy of
the distribution; H(u) = >, pu(t)log (1/u(t)). A quick calculation shows that
H(5%) =0, H(r) = log|G|; and also that H(v**) increases to log |G| monotoni-
cally [11]. Therefore o(k) := log |G| — H(v**) is a measure of closeness to random.

A lower bound, adapted from [2], is (k) > (1 — k) log |G| + ko(1).

The default measure of closeness to random in this work, however, is variation

distance. If p,v € M,(G), their variation distance is

lpe = v]| = max |u(A) — v(A4)] (2.3)
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Diaconis [12] notes an interpretation of variation distance of Paul Switzer.
Consider p, v € M,(G). Given a single observation of G, sampled from p or v
with probability 1/2, guess whether the observation, o, was sampled from g or
v. The classical strategy presented here gives the probability of being correct as

121+ |l —vD):
1. Evaluate u(o) and v(o).
2. If pu(o) > v(o), choose p.
3. If v(o) > p(o), choose v.

To see this is true, let {u > v} be the set {t € G : u(t) > v(t)}. Suppose o is
sampled from p. Then the strategy is correct if o € {u =v} or o € {u > v}:

P[guessing correctly | u] = Plo € {u=v}|pu] +Plo e {pn>v}|u

with a similar expression for P[guessing correctly | v]. Note that Plo € {u =v}| =

pu({p =v}) =v({p =v}) and also Plo € {u > v} | u] = p({p > v}) (and similar
for o € {px < v}). Thus

1
Plguessing correctly | p] + §P[guessing correctly | V]

(e = v}) + (> )+ 3 (i < )

P[guessing correctly] =

N — Do —

It is easily shown that

lp—vil=p({p>v}) —v{{p>r}.
Hence
1

Plgnessing correctly] = 5 | v({p = v}) + v({ > v}) + vl < v}) +ln = vl)

\)

Also the separation distance controls the variation distance as

ot -al= 5 (- vto) <s®)

te{vrk<r}
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It is a straightforward exercise, however, to show that ||u — v is simply half
of the usual [!-distance ||u — v||;. Hence, with P doubly stochastic (|| P|j_pn =1

as column sums are 1), the quick calculation
[ =zl = | = m) Pl < [v* = w1 [ Pllase = v = =l
shows that ||v** — 7| is decreasing in k.

At this juncture Aldous [2] denotes by 7(¢) the time to get e-close to random:
min{k : [[** — 7| < e}. Call 7 := 7(1/2¢) the mizing time. The reason the
random walk driven by v € My,(G) is defined to start deterministically at e
is because due to right-invariance a random walk driven by the same measure
starting deterministically at g # e will converge to random at the same rate.
Also, if & is distributed as 6§ = >, a;", then the walk looks like €, a;&" where
&' is the walk which begins deterministically at ¢. All these constituent walks
converge at the same rate, however, as might be expected:

oP* — x| = - Z <Za5fpk > (s) :%Z S (5tpk(s)—7r(s))|

sEG teG seG |teG
1 1
<3 SN T wldtPEs) —w(s) =Y a (5 3161 PR(s) w(s)|>
seG teG teG seG
< v =7l (2.4)

Certainly there is equality if 0 is a Dirac measure or the random distribution, 7.

2.3 Spectral Analysis

In the case of reversible random walks, where 7 is the random distribution,

7w(g9)p(g,h) = p(h,g)w(h). Hence the driving probability is symmetric:
p(g,h) =p(h,g) & vhg) =v(igh™) e v(s)=v(s!), ¥Vseq

Also in the {J; : t € G} basis the matrix representation of the stochastic operator

is symmetric: p(x,y) = p(y,x). Let (|) be the inner product on F(G):

(614) ,G|Z¢

seG
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When the walk is reversible:

(Poly) = |G|Z<Zpst )(t)

=@ Z¢ (Zp(t, s>w(s>) = (¢ Py),

and so the stochastic operator is self-adjoint. By the spectral theorem for self-
adjoint maps P has an (left) eigenbasis B = {u,...,u|g }. Suppose further that
B is normalised such that 6 = > ayu; with w3 = 7 and a3 = 1 (in fact for
any 6 € M,(G) this normalisation is unique. Let v € R™. Call the sum of the
entries of v its weight. The eigenvectors u;, t # 1, are orthogonal to w. Thence
these eigenvectors have weight 0 so in order for the linear combination to be a
probability distribution the weight needs to be 1, hence a; must be 1.). If P is
ergodic, then the eigenvalue 1 has multiplicity 1. A quick calculation shows that
if \; = 1, then also |\ < 1, for all ¢ # 1. Using an elegant graph-theoretic
argument, Ceccherini-Silberstein et al [7] show that if P is ergodic then —1 is not
an eigenvalue. Therefore in the case of reversible walks (real eigenvalues), |\ < 1,
for all ¢ # 1 (this is also a consequence of the Perron-Frobenius Theorem), and
then

vt =Pk =1+ Z a Ay (2.5)

t#1

Therefore, letting A, := max{|\| : t # 1};

1 1
[ — 7| = 2 ZatAfut = 52 Zat/\fut(S)
t#1 seG | t#1
1
<5202 ladlnHu(s)]
SGG t#1
< Ak ZZ |at||ut | == O)\k
SGG t#1

N

—c
Hence the rate of convergence is controlled by the second highest eigenvalue in
magnitude. In Corollary 2.3.3 an explicit C' is given. The importance of the
second largest eigenvalue is a mantra in Markov chain theory, however it is only

in the reversible case that the importance is so obvious.
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Suppose now that P is a not-necessarily-reversible stochastic operator. Fol-

lowing [29], put P in Jordan normal form:

A1 0
0 N
Ji —
1
0 0 N

and have size equal to the algebraic multiplicity of \;. Note the first entry of
P will be just 1 as 1 is an eigenvalue of multiplicity 1. The Jordan block J; is
the sum of the diagonal matrix \;/ and the superdiagonal, and thus nilpotent,
matrix N;. With P* = diag(1,J?,...,J"), and noting N = 0 where d; is the
multiplicity of \;;
JF= (NI + Ny)F zk: ( )A’“ N/ —df (k)xk—jzvj
§=0 5=0 i) .

Now, for j < d;, Nij is the matrix with ones on the jth diagonal above the main
diagonal. Hence JF is a matrix whose lower diagonal entries are zero and have

equal entries along this ‘jth diagonal’, namely

= (5

Hence the magnitude of the entries along the jth diagonal is bounded by (as

k
ky 1k
1(75),] < M (])

The remaining manipulations are dependent on the relation of k to d;. Assuming

Bl < ()
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In Jordan normal form, P converges to the matrix with 1 in the (1,1) entry
and zero elsewhere. Clearly it is the block corresponding to the second largest
eigenvalue in magnitude which is the slowest to converge and hence this eigenvalue

controls convergence.

Taking the approach of [7], more explicit bounds for the reversible case may
be found. If the walk is reversible then P has an (right) orthonormal basis
B = {v; : t € G} with corresponding eigenvalues {\; : t € G}. Let v; be the
constant function with value 1 (so that A\; = 1). Put A = diag(\, ..., \g). Now

Pug(g Zp (g,t)vs(t) = vs(g)As & PU =UA
where U = [v1] - - - |yj|]. From orthonormality

(vs|vp) = |G|ZUS vp(t) = 6,(h) & UTU = |G|I

As a matrix of eigenvectors, U is invertible with U™t = UT/|G|. Hence P =
UAUT /|G|, and so:

1
PF = P UA UTU AUT - AUT = UNUT |G
Sar
k c:);ies

Or, in terms of coordinates,

p( Z )\ Ut

e

2.3.1 Proposition

Suppose v is symmetric. Then in the notation above

% — 7|2 = Z A2k, (e)? (2.6)
t;él
Proof. By definition

Il ==l =D (v (s) = n(s))?

seG

¥ (z Moo >/|G|)
seG t#1

= D7 (@A D v (s)vi,(5)/|GI?
t1,ta#£1 seG
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But UTU/|G| = I; equivalently

D vn(8)vi(8)/1G] = 8, (t2)

seG

and so

2.3.2 Corollary: Upper Bound Lemma

Using the same notation, where || - || is the variation distance:
1
I —* < szt(6)2/\3k (2.7)
t#1

Proof. The proof is a rudimentary application of the Cauchy-Schwarz Inequality:

*. 2 1 *. 2
v~ = 2o — 73
- (Z{w’“(w ~=(OIVIGT} L)
I\ ]
< (St -mwpien) (X5 ) e
4 teG teG‘ |

[\

Vo
=|G|llv*F—=lI3

2.3.3 Corollary

In the same notation:

[v* —x|* < 1 (A% (2.8)
Proof. Since |[\;| < A, for all £ # 1,
ok 2 2% 2 (A)* 2
[ =l < = (M) vi(e)® < 1 > wle)
t£1 t£1
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Note that the eigenvectors of symmetric matrices can be chosen to be real-valued

[1], so that v,v; = v2. Also UUT = |G|I and hence UTU = |G|I thus

S u(e) = ¢

teG
vi(e)? + > w(e) =1+ vle) =G| o
t#1 t#1

When v is symmetric, the associated stochastic operator, P, is symmetric and
hence has real eigenvalues which can be ordered 1 = Ay > Ay > -+ > Ajg > —1.
So now A, = |Ag| or [Aig|. Of course, if the spectrum of P can be calculated
then these bounds are immediately applicable, however more often one must do
with estimates. Diaconis and Saloff-Coste [15] has many examples. Lemma 1
in that paper is a standard result in the field and is proved by consideration
of the probability v/ = (v — v(e)d®)/(1 — v(e)) however a quick application of
Gershgorin’s circle theorem [24] shows the A > —1 4 2v(e) result also. As
the Gershgorin result is mentioned in the sequel, and not typically used by the

random walk community, it is presented here:

2.3.4 Gershgorin’s Circle Theorem

Let A be a complex n x n matriz with entries a;;. Let Ry = >, |aij| be the
sum of the absolute values of the entries in the ith row, excluding the diagonal
element. If Bla;;, R;| is the closed disc centered at a;; with radius R;, then each

of the eigenvalues of A is contained in at least one of the Bla;;, R;].

Proof. Let X be an eigenvalue of A with eigenvector v. Let |v(k)| = max; [v(j)].

Now
Av(k) = ao(j) = Mo(k).
Jj=1
That is

> arv(f) = Mo(k) — ago(k).

ik
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Divide both sides by v(k);

ijék arjv(J)

AT =

Zj;ék aij(j)‘ < Z |Clkj|

U(j)‘
—| < E lag;| = Rk.
7k v(k)| ~

In other words |\ — axx| < Ry

Note that the diagonal entries of a stochastic operator driven by v € M,(G)
are all v(e). Hence the radii, R;, are all equal to 1 — v(e). The theorem says,
for any eigenvalue of the stochastic operator, A, |\ — v(e)] < 1 — v(e). Note
Tr P = |G|v(e). If P is put in Jordan form, since the trace is basis independent,
it is found that Tr P = ), A\;. Hence the average of the eigenvalues' is equal to
v(e). Therefore, as 1 is an eigenvalue, there are eigenvalues less than v(e), i.e.
A < v(e). In the symmetric case, therefore, A\ —v(e) < 0so that —\g +v(e) <
1 —wv(e), thus \g > —1 4 2v(e). In the general, not-necessarily-symmetric case,
the eigenvalues are not necessarily real. However, with |A — v(e)] < 1 — v(e),
if v(e) > 1/2, then the eigenvalues are bounded away from zero so that the

stochastic operator, P, is invertible.

2.4 Comparison Techniques

Whilst some random walks yield easily to analysis, others do not. There are a
number of techniques, due to Diaconis & Saloff-Coste [15], however, that allow
comparison with a simpler walk. Often the continuous analogue of a discrete
random walk yields readily to analysis. Diaconis & Saloff-Coste [15] present, in
the symmetric case, the most general relationship between the discrete and con-
tinuous time version of a given random walk. This paper also uses Dirichlet forms
and the Courant minimax principle to estimate eigenvalues on a complicated walk

from a simpler version.

lit would be interesting to try to apply this to obtain a bound for [|[v** — ||
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2.5 Lower Bounds

The definition of variation distance immediately gives a technique for generating
lower bounds. Given a test set B C G, immediately ||[v** — 7| > |[v**(B) — m(B)|.

A very simple application uses the fact that [supp(v**)| < |S[F. Let Ay C G be

k

the set where ** vanishes. Clearly

*k _ 1 ky _
[ (Ag) — m(Ag)| = w(Ar) = |_G|(’G| —[%") =

=
Gl
Another elementary method for generating a lower bound using a test function

is apparent via

= vl = = max | S (u(t) - v)e(0)] (2.9)

= — Ila
2 ¢|I<1
I H_ teG

The discussion in Section 6.2 implies that if the (right) eigenvector v, is nor-
malised to have [|vs||o = 1, then v will have expectation zero under the random

distribution, ), m(t)vs(t) = 0.

2.5.1 Proposition

Let uy be a real left eigenvector with eigenvalue X # 1 and normalised such that
T+ uy € M,(G). Then
. 1
[ =7l = Sl A

Proof. Let 6§ = m + uy. Using the fact that a non-Dirac initial distribution 6
converges faster than any Dirac measure (see (2.4)), it is clear that [|[§P* — 7| is

a lower bound for ||v** — 7||;

1
10P* — 7|| = ||m + Moy — || = §||UA||1|)\|k .
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2.6 Volume & Diameter Bounds

By elegant analysis of the properties of the geometry of the random walk, bounds
may be put on the eigenvalues of P and applications of the bounds of this Chapter
give bounds on the variation distance. The geometry of the random walk is
determined by its Cayley graph. Suppose that £ is a random walk on G with
driving probability supported on a generating set . The Cayley graph of the
random walk is a directed graph with vertex set identified with G. For any
g € G, 0 € X, the vertices corresponding to the elements g and og are joined
by a directed edge. Thus the edge set consists of pairs of the form (g,0g). The
growth function of the random walk is V (k) := |3*| and the diameter of £, A, is
the minimum k such V' (k) = |G|. Say a random walk has (A, d) moderate growth

if )
%Zi(g) C1<kE<A. (2.10)

The following theorem appears in Diaconis & Saloff-Coste [16]. The proof — via
the heavy machinery of path analysis, flows, two particular quadratic forms and
some functional analysis — is omitted. More details are to be found in [15]. First

an attractive lemma:

2.6.1 Lemma

Let & be a symmetric random walk with diameter A. Let L := min{v(s) : s € £}.

Then, where Xy is the second largest eigenvalue?

L
M <1- 55 (2.11)

2i.e. not necessarily A
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2.6.2 Theorem

Let € be a symmetric random walk with (A,d) moderate growth. Then for k =
(14 ¢)A?/L, with ¢ > 0:
|v** — 7| < Be™® (2.12)

where B = 24d+3)/4/ A
Conversely, for k = cA?/(219+2A2):

1
| — 7| > 3¢ (2.13)

Example: The Heisenberg Group

Consider the set of matrices:

1 a b
Hsn)=101 ¢ (2.14)
0 01

where a, b, ¢ € Z,,. With matrix multiplication modulo n, Hs(n) forms a group of
order n®. The random walk driven by the measure v, € M,(Hz(n)) constant on
the matrices (a, b, c) = (£1,0,0), (0,0,£1), (0,0,0) is ergodic. Diaconis & Saloff-
Coste [16] have shown that the random walk has diameter n—1 < A <n+1 and
volume growth function V' (k) > £k3/6 (1 < k < n+1). With order® |Hz(n)| < 8A3,

V) _ K6 1 [(k\°
— > = — | = < k<
V(A) = 8A3 48 \ A forl<k< 4,

the random walk has (48, 3) moderate growth.
Precise application of Theorem 2.6.2 yields for constants A, A', B, B’

A/efB’k/n2 < HV;k _ 7TH < Ae*Bk/T12 (2.15)

Hence order n? steps are necessary for convergence to random.

3p3 < 8(n —1)% < 8A3 for n > 4.
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Chapter 3
Diaconis-Fourier Theory

Much of the precluding analysis passes neatly into the case of the classical Markov
theory for a random walk on a finite set X. It has been seen that this analysis
culminates in the result that the rate of convergence of to a stationary state is
related heavily to the second largest eigenvalue of the stochastic operator. As a
rule the calculation of the second highest eigenvalue is too cumbersome for larger
groups and further the bound is not particularly sharp due to the information
loss in disregarding the rest of the spectrum of the stochastic operator.

In his seminal monograph [12], Diaconis utilises the group structure to produce
bounds for rates of convergence. He uses Fourier methods and representation
theory to produce bounds that are invariably sharper as the entire spectrum is

utilised. This chapter follows his approach.

3.1 Basics of Representations and Characters

A representation p of a finite group G is a group homomorphism from G into
GL(V) for some vector space V. The dimension of the vector space' is called the
dimension of p and is denoted by d,. If W is a subspace of V' invariant under

p(G), then ppy is called a subrepresentation.

lat this point the underlying vector space may be infinite dimensional but later it will be
seen that the only representations of any interest are of finite dimension. Also the underlying
field is unspecified at this point but later it will be seen that the only representations of any
interest will be over complex vector spaces.
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If (.,.) is an inner product on V, (u,v), = >, (p(t)u, p(t)v) defines another,
and further the orthogonal complement of W' with respect to (.,.),, W+, is also
invariant under p. Hence, every representation splits into a direct sum of subrep-
resentations. Both {0} and V itself yield trivial subrepresentations. A represen-
tation p that admits no non-trivial subrepresentations is called irreducible. An
example of an irreducible representation is the trivial representation, T, which
maps G to 1: p(s)z = z, z € C. Inductively, therefore, every representa-
tion is a direct sum of irreducible representations. A quick calculation shows
(p(s)u, p(s)v), = (u,v),, hence ||u||, = ||p(s)v]|, so the operators p(s) are isome-
tries and are thus unitary. Two representations, p acting on V' and p acting on
W are equivalent as representations, p = o, if there is a bijective linear map

f € L(V,W) such that po f = fop. In this context f is said to intertwine ¢ and
p.

Example: A Two Dimensional Representation of the Dihedral Group

The dihedral group Dy, the group of symmetries of the square, admits a natural
representation p. The elements of D, are the rotations 7o, 7/2, T'x, T37/2 and
reflections (12), (13), (14), (23). If the vertices of the square are inscribed in a

unit circle at the poles? then p(rg) are the rotation matrices:

(rg) cos) —sinfd
p(re) =
sinf  cos@
Similarly the reflections have action as reflection in y = x, y = —z, y = 0 and

x = 0 which have matrix representations:

1 0 -1 0
,o<<12>>=<0 _1) p<<13>>:( . 1)

%i.e. the coordinates (£1,0), (0,=£1).
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3.1.1 Schur’s Lemma

Let py : G — GL(V}) and py : G — GL(V,) be two irreducible representations of
G, and let f € L(V1,V2) be an intertwiner. Then

1. If p1 and py are not equivalent f = 0.
2. If Vi =1V := V4 is complex, and py := p =: pa, [ = M, for some, A € C.

Proof. The straightforward calculations f(p1(G)ker f) = po(G) f(ker f) = 0 and
p2(G)Im f = f(p1(G)V1) show that ker f and Im f are invariant subspaces. By

irreducibility both the kernel and image of f are trivial or the whole space.

1. Suppose f # 0. Hence ker f = {0} and Im f = V5 so f is an isomorphism
as it is linear. However this would imply that p; and py are equivalent as

representations, a contradiction. Thence f = 0.

2. If f =0 then f = 0.I. Suppose again f # 0. Then f has a non-zero
eigenvalue A € C with associated non-zero eigenvector v, # 0. Let f, =
f — M. A quick calculation shows that p(G)fA(V) = fa(p(G)V), hence fy
is an intertwiner. Note that ker f\ # {0} as vy € ker fy. Thence ker f\, =V
that is f = 0, which implies f = A o

Let p1 : G — GL(V4) and py : G — GL(V3) be two irreducible representations
of G and hy € L(V}, V). Let

| Z Py ()hopa(t) (3.1)

teG
A quick verification shows that h is an intertwiner of p; and ps, and by recourse
to Schur’s Lemma h = 0 in the case where p; # po, and h = Al when p; = ps. In
the case p; = p», taking traces gives A = Tr h/d, and a further calculation shows
Tr h = Tr hy. Suppose p; and p, are given in matrix form as py(s) = (r;(s)) and
p2(s) = (r7;(s)). The linear maps h and hg are defined by matrices z;; and 7.

In particular,

Tij Z rialt xM 1j i (1) (3.2)

teG
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Suppose p; #Z p2 so that h = 0 when defined by hy = 0y;. In this case z;; = 0 and
(3.2) collapses to

|G|Z LE L) =0, Vi k1, j. (3.3)
ted
In the case where p; = po, h = A, where, in matrix elements, A = » a0 Jd,.
When h is defined by hg = 0y, (3.2) collapses to
_ 940k
teG p

Note again that p(s) is a unitary operator so that p(s)* = p~!(s), thence rj;(s) =
7i;(s71). A simple rearrangement of (3.3) and (3.4) using this fact show that the

matrix elements of the irreducible representations are orthogonal in F(G).

If p is a representation, the character of p, x,(s) := Tr p(s). Using the preced-
ing remarks, it can be shown that the characters of the irreducible representations
are orthonormal in F'(G). If p; and p, are representations with characters x; and
X2, by choosing a basis so that the matrix of p; @ po is a block 2 x 2 matrix with
p1 in the (1,1) position and ps in the (2, 2) position, taking traces shows that the
character of p; ®ps is X1+ Xx2. Suppose now p is a representation with character ¢
that decomposes into a direct sum of irreducible representations p = p1 & - - - B pi.
If each of the p; have character x;, then ¢ = x1 + -+ - + x&. If p/ is an irreducible
representation with character y, then (¢[x) = > .(xi|x). By orthonormality,
(xilx) = 0 or 1 as x; is, or is not, equivalent to x. Thence, the number of p;

equivalent to p’ equals (¢]x).

A canonical representation is the reqular representation; defined with respect
to a complex vector space with basis {e,} indexed by s € G via r(s)(e;) := eg.
Observe that the underlying vector space is isomorphic to F/(G). It is a simple
exercise to show that x,(e) = |G| and zero elsewhere. This implies that for an
irreducible representation p;, (xr|x:) = xi(e)* = Tr Iy, = d; so that x,(s) =
> dixi(s), where the sum is over all irreducible representations. Letting s = e
here yields Y. d? = |G|. Now it can be seen that the matrix entries of the
irreducible representations form an orthogonal basis for F'(G) because they are

orthogonal and there are Y, d? = |G| of them: dim F(G) = |G].

37



3.2 Fourier Theory

Let f € F(G) and p a representation of G. The Fourier Transform of f at
the representation p is the operator f(p) = > . f(s)p(s). This Fourier transform
satisfies an inversion theorem, a Plancherel Formula; and, of course, a Convolution

Theorem f/*\h(p) = f(p)/ﬁ(p) whose proof is rudimentary.

3.2.1 Fourier Inversion Theorem

Let f € F(G), then, where the sum is over irreducible representations,
1 PN
f(s) = 1€l > diTr (pi(s™) i) (3.5)

Proof. Both sides are linear in f so it is sufficient to check the formula for f = ¢;.

Then f(pl) = pi(t), and the right hand side equals

1
—1 —1

When s =t this equals 1; otherwise it is 0; i.e. it equals §; @

3.2.2 Plancherel Formula

Let f, h € F(G), then

> fsThhls) ‘G,Zd Tr (F(pi)h(p:)) (3.6)

seG

Proof. Both sides are linear in f; so consider f = 9;. Using the Fourier Inversion

Theorem

= o (s7h(s) = ‘G’Zd Tr (p:i()h(p:))

seG

However, p;(t) is nothing but 8,(p;) so the formula is verified
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In the sequel, mostly elements of M,(G) viewed as elements of F'(G) are
considered. Let u € M,(G) and let ji(s) := u(s™'). After a reindex, t + t71,
i(p) = 32, u()p(t™"). With the unitary nature of the representation, and the
fact that u =7 as p € R, in fact fi(p) = 7i(p)*. Hence, for v € M, (G):

S u(tywlt) = ,—; S T [fp)ip)’] (3.7)

teG

With the aid of two quick facts the celebrated Upper Bound Lemma of Diaconis
and Shahshahani [12, 17] may be proven. The first of these is the straight-
forward calculation that for all v € M,(G), at the trivial representation 7,

v(1) =), v(t) = 1. The second comprises a lemma.

3.2.3 Lemma

At a non-trivial irreducible representation, p, the Fourier transform of the random

distribution, m, vanishes: T(p) = 0.

Proof. First note that h = ), . p(t) is a linear map, invariant under any p(s):
p(s)h = h = hp(s). As a consequence both ker h and Im h are invariant subspaces.
By irreducibility, both the kernel and the image of h are trivial or the whole space.
Suppose ker h = {0} and Im h = V. For any v € V, p(s)hv = hv. Hit both sides
with A= h™tp(s)hv = v. Now use the fact that p(s) and h commute to show
p(s)v = v. Hence p is trivial. Therefore kerh = V| Im h = {0}, i.e. h = 0. Now

T(p) =22 m(t)p(t) = h/|G| =0 e
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3.2.4 Upper Bound Lemma

Let v be a probability on a finite group G. Then
1 -~ -~ *
by ==l* < ; > diTr (U(p)D(p:)"), (3.8)

where the sum is over all non-trivial irreducible representations.

Proof. Using the Cauchy-Schwarz Inequality

Ay —=|* = {Z v (t) - 7T(7f)|}

<G lv(t) =w()F = 1G] Y _(v = m)(B)(v = 7)(t),
teG teG

where of course v — 7 is a real function. Thus, by (3.7)

—

=" < i D7 T [ R0 =)o)

—

Now (v —m)(p) = >_,(v(t) — 7(t))p(t) = V(p) — 7(p). With the preceding facts:

— 0 if p is trivial
(v —m)(p) = {

v(p) if p is non-trivial and irreducible

So therefore
Ay —=l> <> d Tr (9(p1)0(p:)"),

where the sum is over all non-trivial representations e

—

This bounds are applicable to ||v**—u|| via the Convolution Theorem: v**(p) =
7o)
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3.3 Number of Irreducible Representations

Let G be a group and g, h elements of G. An element g € G is conjugate to h,
g ~ h, if there exists ¢ € G such that h = tgt~!. Conjugacy is an equivalence
relation on a group [22], and hence forms a partition of G into disjoint conjugacy

classes G = [s1]~ U [sa]~ U+ U [s,]~, where
[sl.={geG:Fte G g=tst '} ={tst™" : t € G}. (3.9)

A complex function f € F(G) is a class function if for all conjugacy classes
[si]~ C G, fis). = A, for some A € C. Let €I(G) be the subspace of F(G)
consisting of all class functions. The characters of a representation are class
functions. Let f € €I(G) and p be an irreducible representation. Note that
p()f(p)p(s™) = X2, f(t)p(sts™), and with a reindexing ¢ ~— s~ 'ts, it is clear

that f is an intertwiner for p. Thus, by Schur’s Lemma, f(p) = M. Taking traces

~

gives A =Tr (F(p))/d, = X0, F()x(8)/d, = |GI(fIx")/d,.

3.3.1 Theorem

The characters of the irreducible representations x1, X2, - - -, X1 form an orthonor-

mal basis for CI(G).

Proof. Characters are orthonormal class functions. As CI(G) together with (.|.)
forms an inner product space, and Q = span{x;} is a subspace: €[ = Q®Q+. Let
f € €I have the decomposition f = g + h, with g € Q, h € Q+. Therefore for all
irreducible representations x;: (h|x}) = 0. The preceding remarks indicate that

/ﬁ(p) = |G|(h|x})I/d, = 0. The Fourier Inversion Theorem yields:
h(s) = 1 ZdiTr (pi(sfl)ﬁ(pi)> = 0.
Gl 4

Hence therefore Q1 = {0} and the characters of the irreducible representations

span C[(G). e
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3.3.2 Theorem
The number of irreducible representations equals the number of conjugacy classes.
Proof. Theorem 3.3.1 gives the number of irreducible representations, [:

[ = dim(Cl(G))

A class function can be defined to have an arbitrary value on each conjugacy

class, so dim(€I(G)) is the number of conjugacy classes o

As an immediate corollary, all the irreducible representations of an Abelian
group G have degree 1. To see this note if G is Abelian, there are |G| conjugacy
classes, so |G| terms in the sum ), d? = |G/, each of which must be 1. Hence if G
has [ conjugacy classes and [ representations are found, if the [ representations are

inequivalent and irreducible, all the irreducible representations have been found.

3.3.3 Theorem

Two irreducible representations with the same character are equivalent.

Proof. Suppose x1, x2 are identical characters of non-equivalent irreducible rep-

resentations p; and po,

1 _
(x1lx2) = al > xaxa(D) 0.

eC x1(e)#0

However the characters of irreducible representations are orthonormal. This is a

contradiction; hence p; = ps @

3.3.4 Theorem

Let x be the character of a representation p, then p is an irreducible representation

if and only if (x|x) = 1.

Proof. Clearly if p is irreducible (x|x) = 1. Suppose for the converse that (x|x) =
1. Any representation p is the direct sum of irreducible representations {p;} with
character y = x1 + x2 + -+ + Xm- Therefore if (x|y) must equal 1, then there

exists a unique py such that p = p;,
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Example: The Quaternion Group, Q

Consider the quaternion group Q = {+£1, 4,45, £k} where 1 is the identity.
Multiplication in Q is defined by (—1)? = 1 and i* = 52 = k? = ijk = —1, where
—1 commutes with everything. The quaternion group has five conjugacy classes
{1}, {—1}, {£i}, {£j} and {£k} and thus five irreducible representations. As
>, d? = |G], the there must be one irreducible representation of degree 2 and

four of degree 1. Consider the linear map p : @ — GL(C?) given by:

, i 0 0 —1
p(@)=<0_z_> p(k)=<1 0)
. (3.10)
p(j) = ( , ) p(1) =1, p(=s) = —p(s)

Straightforward calculations show that p is a representation. Also (x|x) =1,
and in light of Theorem 3.3.4, p is the two dimensional irreducible representation.
Let 7 : @ — GL(C) be the trivial representation; it is the second irreducible
representation. Let p; : @ — GL(C) (respectively p;, pi) be defined by:
{ 1 ifse ()

pi(s) = (3.11)

—1 if s & (i)
This is a one-dimensional representation so is irreducible. It is an easy calculation

to show that {7, xi, X, xx} is an orthogonal set so comprise four inequivalent

representations. Hence the set of irreducible representations of Q are given by

{p, 7. pis s p1}-

3.4 Simple Walk on the Circle

Consider the walk on {Z,, ®} driven by

% if s =+1
Un(s) := (3.12)
0 otherwise
Z,, is an Abelian group, so all irreducible representations have degree 1. Any
p is determined by the image of 1: p(s) = p(1°) = p(1)*. Also 1" = 0, hence
p(1)" = p(1™) = p(0) = 1 so p(1) must be a n-th root of unity.
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There are n such: e*™/™ t =0,1,2,...,n — 1. Each gives a representation

pi(s) = e2™*/" Now some results used in the Lower Bound; see Appendix A for

proof.

3.4.1 Lemma

The following (in)equalities hold.

1. For any odd n and k € N,

n—-1 (n—1)/2
cos? (27t /n) = 2 Z cos® (1t /n) (3.13)
=1 =1
2. Forx € [0,7/2],
cosz < e /2 (3.14)

3. For any x >0
Z e~ (* Dz < Z e 3I@ (3.15)

4. For z € [0,7/6],
cosx > e % /2wt (3.16)

3.4.2 Upper and Lower Bounds

For k > n?/40, with n odd,
[ R (3.17)
Conversely, forn > 7, and any k

it — | 2 S (318)

Proof. The Fourier transform of v, at p; is:

n—1
» 1 5. 1 . 27s
/; ) = (1 2mist/n - 2mis/n | — _—2mis/n '
V(p)—tgzoy()e =3¢ +26 = cos | —
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The Upper Bound Lemma and (3.13) yield

n—1 (n—1)/2
1 2mt 1 mt
k2 o 1 2%k L 2%k ‘
| — 7| 1 ;1 Cos =3 E Cos -

Applying (3.14) yields

(n—1)/2

7242k /n2 1 op2 s 2042 2
HV;k’_ﬂ_n”2§§ Z e w22k /n §§€ m2k/n Ze m2(t2—1)k/n :
t=1 t=1
and so with (3.15)
1 2 > 32 2 1 6’7”2’6/"2
[ = mall? < ey e T = o
t=0

Now since k > n?/40, 2 (1 — 6_3“2’“/”2> > 1, and it follows that

HV;k i 7TnH < €7w2k/2n2

For the lower bound, consider the norm 1 function ¢(s) = ps(s) = cos(27s5/n)
where 5 = (n — 1)/2. By Lemma 3.2.3, ¢(s) has zero expectation under the

random distribution. Now an application of (2.9) gives

_1i=
- n

PO

teG

1
k
v = mall 2

Now 7, (ps) = cos(2w5/n) = —cos(w/n) by a quick calculation. By (3.16), for
w/n < 7/6:

1 |
||V:<Lk _ 7Tn|| > 5 ‘COS%‘ > §€—ﬂ—2k/2n2_7r4k/2n4 o

45



Remark

If n is even then {1, —1} lies in the coset of odd numbers of the normal subgroup

{0,2,...,n—2} =: H < Z,, and so the walk is not ergodic by Theorem 1.3.2.

0.8

06

40 60 80 100 120

Figure 3.1: A plot of the upper and lower bound for n = 11.

3.5 Nearest Neighbour Walk on the n-Cube

Consider the walk on {Z%, @5}, n > 1, driven by

— ifw(s)=0or1

vn(s) == (3.19)
0 otherwise
where w(s), the weight of s = (s1, S2,...,S,), is given by the sum in N:

n

w(s) = Z Si (3.20)

i=1
7% is an Abelian group, so all irreducible representations have degree 1. It is

a simple verification to show that each are given by p;(s) = (—1)"*.
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Now some results used in the Upper Bound; see Appendix A for proof.

3.5.1 Lemma

The following inequalities hold.

1. Ifl <nJ/2,
2k 2k
n\ (. 21 > n 1 2(n+1-1) (3.21)
l n+1 n+1-—1 n+1
2. When a <b,
b
a a
< — .
(b) — b (322)
3. Letne N, ¢>0. If k= (n+1)(logn+c)/4
25 \2
_ < o—ilogn—je ‘
(1 n+1) <e (3.23)
3.5.2 Upper Bound
For k= (n+1)(logn+c)/4, ¢ > 0:
1 -
*k _ 2 < - e ¢ _
vk = mall? < 5 (e = 1) (3.24)

Proof. Let {e;} denote the standard basis® of Z3:

]

Z(ps) = D (=1)"wn(t) =

n+1

Now s - e; = 8; 50 - :
O DI
g gl
:E%Tﬁ+Jan+@—w@xm
_ntl-2uls) g 2uls)

n+1 n—+1

3of the finite vector space Z% with underlying field Z.
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Thus Upper Bound Lemma gives (summing over weights on the right equality):

1 1w /n 27 \*
*k 2 ~ 2k J
vk — |2 < Zzun(pt) = ZZ (J) (1 - 1) . (3.25)

t£0 j=1

Let n/2 < j <nsuchthat j=n+1-1(ie. [ € {1,2,...,|n/2]}) and consider
the (n +1 —[)th (i.e. jth) term in this sum. By (3.21), the [th term dominates
this term, and for [ € {1,2,...,|n/2|},

(-2 ) (2 )2

Noting that the ‘middle’ term (i.e. n odd) is unaffected, (3.25) is thus dominated
by a sum of [n/2] terms. Therefore, with (3.22)

n/2] [n/2] _
1 elosn , 1 e J¢
||V;k o 7Tn||2 S - e—jlogn—]c -
2= J 2 ; J!
Lo~ (e L) L e
<z L 1) == < e 1)
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Chapter 4

The Cut-Off Phenomena

4.1 Introduction

Given an ergodic random walk &, a number of techniques for bounding ||v** — ||
have been developed. Recall the mixing time, 7, as the minimum k such that
|v** —7|| < 1/2e. In particular, as ||v** —x|| is decreasing in k, if ||** —7|| < 1/2e,
then 7 < k. In many random walks, behaviour called the cut-off phenomenon
occurs and it makes sense to talk about the mixing time, 7, as the time when &

is random.

v

1.0

08}
06

04l

Figure 4.1: In the cut-off phenomenon, variation distance remains close to 1

initially until the mixing time 7 when it rapidly converges to 0.
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In the cut-off phenomenon, the random walk remains far from random until
a certain time when there is a phase transition and the random walk rapidly

becomes close to random.

4.1.1 Example: Random Transpositions

As described in Section 1.3.1, repeated random transpositions of n cards can be

modelled as repeatedly convolving the measure:

1/n ifs=e
Vn(s) := ¢ 2/n? for s a transposition
0 otherwise

Careful analysis of the representation theory of the symmetric group and an
application of the Upper Bound Lemma yields [12], for k = (nlogn)/2 + cn, for
c> 0

[P

— || < ae™* (4.1)

for some constant a. For a lower bound, Diaconis considers the set A C 5,
of permutations with one or more fixed points. Two classical results of Feller!
give sharp approximations of **(A4) and 7,(A) and hence a lower bound for the

variation distance may be given. For k = (nlogn)/2 —cn, ¢ > 0, as n — oc:

1 “2c
It = mll = (= ™) o) (1.2

Hence for n large, the random walk experiences a phase transition from order to
random at ¢, = nlogn/2. Indeed, this was the first problem where a cut-off was

detected ([17]).

namely the matching problem and the computation of the probability that when 2k balls
are dropped into n boxes, that one or more of the boxes will be empty [18]
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4.2 Formulation

There are a number of roughly equivalent formulations of the cut-off phenomenon.
The subject developed from the question how many times must a deck be shuffled
until it is close to random? Card shuffling is modelled by a random walk on S,
where the shuffle is defined by the driving probability v € M,(G). In most cases,
the driving probability v is related to n so it makes sense to talk about a natural
family of random walks (S, v,,). When a good asymptote of the mixing times of
these walks was accessible, it was found that in a number of examples that the cut-
off behaviour becomes sharper as n — co. As a corollary of this development, the

cut-off phenomenon is defined with respect to the limiting behaviour of a natural
family (G, vs).

In general, a formulation will be referenced to a particular distance of close-
ness to random. Surprisingly, given different norms on M,(G), a random walk
exhibiting the cut-off phenomenon in the first need not exhibit the cut-off phe-
nomenon in the second. There are a number of roughly equivalent formulations
(see Chen’s thesis [8]) that introduce a window size w,. This means that the
variation distance goes from 1 to 0 in w, steps rather than 1 however these for-
mulations still require that 7, > w, such that w,/7, — 0 hence there is still
abrupt convergence. The original formulation of Aldous & Diaconis [4] appeals

to an arbitrary sharpness of convergence of variation distance to a step function:

4.2.1 Definition

A family of random walks (G,,, v,,) exhibits the cut-off phenomenon if there exists
a sequence of real numbers {t,}>°, such that given 0 < ¢ < 1, in the limit as

n — 00, the following hold:
(a) a9 =0
(b) [l || = 1

(c) t, = o0
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If 7,, is the mixing time of (G,, ) presenting cut-off, then the above formu-
lation implies that 7,, ~ t,, so it makes sense to say that t¢,, is the time taken to

reach random.

Example: Walk on the n-Cube

Recall the walk on the n-Cube from the last chapter. Along with the upper bound
extracted from the Diaconis-Fourier theory, tedious but elementary calculations
bound the variation distance away from 0 for k = (n+ 1)(logn — ¢)/4 for n large
and ¢ > 0 ([7] — Th. 2.4.3). This is done via the test function ¢(s) = n — 2w(s)
whose expectation and variance under 7 are easy to calculate (namely 0 and n).
The set Ag C Zj is essentially defined as the elements whose weight is sufficiently

close to n/2 for some f:

Ag = {s € Zy : |¢(s)| < Bv/n}

Use of the Markov inequality bounds 7,(Ag) above 1 — 1/32. More intricate
calculations yield v*(Ag) < 4/5% and thence

N 5
v =l > 1~ 7 (4.3)
A more precise definition of 8 in terms of ¢ makes this lower bound useful?. Hence

it follows that the random walk has a cut-off at time ¢, = nlogn/4.

%if B = e°/? /2 then the lower bound is 1 — 20/e¢, which clearly tends to 1 as ¢ increases
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Example: Simple Walk on the Circle

The simple walk on the circle does not exhibit cut-off. Considering the bounds
developed in Section 3.4.2, note that at k = n2/2, |[** — m,|| < e"™/4, and due
to the decreasing nature of ||v** — 7, this is an upper bound for all & > n?/2.

Similarly at k& = 3n?/2:

1 2 4 2 1 2
*k —3m?%/4—-3n /4n —372/4
”Vn n” 26 n—00 26

and this lower bound holds for all k£ < 3n?/2.

AR

Figure 4.2: In the limit as n — oo the simple walk on the circle does not
experience an abrupt transition from far from to close to random. Note that

d(k) = ||[v* — 7,|| and the graph is not to scale.

It is an open problem to determine for which families of random walks (G,,, v,)
does cut-off occur. Unfortunately there does not appear to be a nice condition for
an isolated random walk £ to exhibit cut-off. In contrast, given G and v € M,(G),

the ergodic theorem 1.3.2 determines whether or not (G, v) is ergodic.
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An initial attempt at reformulation would be to have as fundamental a period
of ‘far from random’ and a period of sharp transition to ‘close to random’. Rather
than being arbitrarily far from random and arbitrarily close to random (in the
limit), this finitary formulation would have to define controls a,b > 0 for far and

close to random:

4.2.2 Definition

A random walk on G driven by v € M,(G) has (a,b,q) finitary cut-off if A :=
{k:|v* -7z >1—a}, B:i={k:b<||v** — 7| <1-a} and q = |A|/|B].

Therefore if (G, v,,) presents cut-off, each member also has (a,,, by, ¢,) finitary
cut-off, where a,, b, — 0, |A,| — oo, and ¢, — oo. However, consider the natu-
ral family (Z,,, v) where v is uniform on {0, £1}. This family has (1/2,1/4,O(1))
finitary cut-off but does not present the cut-off phenomenon. For a family, there-
fore, presenting cut-off is strictly stronger than presenting finitary cut-off. It is
pretty clear that all random walks have some level of finitary cut-off. Is there an

appropriate level of quality of cut-off?

f(X)

g(x)

Figure 4.3: In a natural definition of cut-off, the exponential function g should

not have cut-off. The other function, f, certainly exhibits some level of cut-off.

A continuous version of (a, b, q) finitary cut-off can be considered. Let f :
R, — [0, 1] be a non-increasing continuous function with f(0) = 1 and f(z) — 0.
f exhibits (a, b, q) finitary cut-off where A = inf{z : f(z) =1—a}, B =inf{x :
f(z) =b} and ¢ = A/(A— B).
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In Figure 4.3, f has (1/2e, 1/2¢, 2.52) finitary cut-off while ¢ has (1/2e,1/2e,0.14)
finitary cut-off. In a number of examples of established cut-off, e.g. the top-
to-random shuffle [14], it has been shown that ||V;L(1_6)th — m,|| = 1 doubly
exponentially as ¢ — 1. Hence consider (1/e%¢,1/2¢,1) finitary cut-off as an ap-
propriate level for cut-off. Indeed f has (1/e%*,1/2¢,0.52) finitary cut-off while
g has (1/€*¢,1/2¢,0.0026) finitary cut-off. However this too runs into problems.
Consider the family of functions f4(z) = (1 — tanh(d(x — 1/2)))/2. This family
has (1/e%,1/2¢,1) finitary cut-off for d > 12.4.

Diaconis remarks [12] that Aldous & Diaconis have shown that for most prob-
ability measures on a finite group G, ||[v** —7|| < 1/|G|, so for large groups, most
random walks are random after two steps.

Therefore, without an alternative formulation of the cut-off phenomenon, it
seems likely there will never be a theorem of the form: A random walk on G with
driving probability v € M,(G) presents ‘the’ cut-off phenomenon at time k if and
only if property P is satisfied.

4.3 What Makes it Cut-Off?

To demonstrate the intransigence of the problem note that the asymptotics of a
reversible random walk [|v** — 7| ~ CA* cannot detect cut-off. A critical idea
for understanding of the cut-off phenomena is that variation distance is sensitive.
Suppose a deck of cards is shuffled (by v € M,(S552)) but the shuffle leaves the
ace of spades at the bottom of the deck. If A C S5y are the arrangements of
the deck with the ace of spades at the bottom, then v(A) =1 but 7(A) = 1/52
and ||[v — 7| > 1 — 1/52; the deck is very far from random in variation distance!
Similarly suppose that after shuffling by v that the ace of spades is in the bottom
half of the deck. By letting B C Ss2 be all such arrangements it is clear ||y —m|| >
1/2. So for any shuffle the entire deck must be well shuffled; it won’t do to have

even coarse information on a single card.
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To illustrate further, consider the top-to-random shuffle. This is the shuffle
that takes the top card of the deck and inserts it back into the deck randomly?.
Suppose the initial arrangement has the ace of spades at the bottom of the deck.
Initially it will take a while for a card from the top to be placed underneath the
ace of spades but eventually one will be and the ace of spades will be second from
bottom. After a great number of shuffles the ace of spades will eventually surface
at the top of the deck. At every stage up to this point, to within a statistical
deviation, the ace of spades is in a specific portion of the deck, dependent on the
number of shuffles. Hence up to this point the deck will be far from random.
After this step however the ace of spades shall be placed at a random position
in the deck and there is every chance the deck is random. It will be seen in the
next chapter that the time for the bottom card to come to the top is essentially

the time to random and hence the cut-off time.

The survey article by Diaconis [13] suggests a number of reasons why cut-off
may occur. Diaconis claims that high-multiplicity of second eigenvalue implies

cut-off after a remark of Aldous & Diaconis [4]. The result from [27]
[ = 7lly > mi A, (4.4)

has some implications for this claim in the two norm (see Chen [8]). However, in
this thesis, cut-offs in variation norm are the subject of study. One might fear
‘folklore heuristic’ failure here. Indeed the claim of Diaconis is almost cited as
fact by Hora [20, 21]. Perhaps a more measured statement would be that to show
cut-off the random walk may have to exhibit a high degree of symmetry which
can imply high multiplicity of the second largest eigenvalue. In the extreme case
of almost all eigenvalues equal to A\, (remembering the average of the eigenvalues

is v(e)), the variation distance looks like CA\* and this doesn’t look like cut-off.

3i.e. driven by the measure constant on the cycles (1,m,m —1,...,3,2), m=1,...,52
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Chen [8] discusses a conjecture of Peres that a general Markov chain exhibits
the cut-off phenomenon if and only if 7,,(1 — Apy) 00 Any Markov chain
with cut-off will satisfy this condition. Chen & Saloff-Coste [9] have proved this
conjecture in the p-norm case for 1 < p < oo however Aldous has given a Markov
chain which is a counterexample in variation distance [8]. Presently there is
no known counterexample to Peres’ conjecture in the case of random walks on

groups.

Theorem 2.6.2 is relevant for family of groups (G, ,) of moderate growth
with |3, A, d fixed as n — oo. These random walks take large multiple of A? to
get random. While a small multiple of A2 is not sufficient for randomness, the
transition from 1 to 0 as the number of steps grows is smooth so that the cut-off is
not exhibited [16]. Diaconis [13] notes that — via Gromov’s Theorem for nilpotent
groups of finite index — this result is generic. For random walks on families of
nilpotent groups where |X| and the index are bounded as n — oo, order A?
steps are necessary for convergence and there is no cut-off. Two examples of such
walks are the simple walk on the circle and the walk on the Heisenberg groups,

and indeed these are the canonical examples where cut-off does not occur.
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Chapter 5

Probabilistic Methods

5.1 Stopping Times

In previous chapters the convergence behaviour of a random walks has been ex-
amined. It is natural to ask questions of the type from which time T onwards
does & have a particular property. As a simple example of such a random time,
consider a random walk . The lowest Tj such that &, = e is such a random
time, namely the first return time.

To make precise, let Aj be the o-algebra generated by the random variables
{& + j < k}, for j, k € Ng. Then the o-algebra generated by the o-algebras

{Ay : k € Ny}, A, canonically admits an increasing sequence:
ACA C---CAC---CA

of sub-o-algebras of A (i.e. a filtration). If S(G) is the set of sequences in G,
then a stopping time is amap T : S(G) — NU{oo} which satisfies {T' < k} € Ay
for all £ € N.

To formalise the first example of a stopping time, the first return time, write
To = min{k > 1 : & = e}. Of course this generalises easily to another example
of a stopping time, namely the first hitting time, T, = min{k > 0 : & = g}.
More generally, a subset A C G has first hitting time T4 = min{k > 0 : &, € A}
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New stopping times may be constructed from old. If 7" and S are stopping
times for a random walk &, then so are min{7, S}, max{7, S}, and T+ n, n € N
(see [28] for proof). The standard analysis of stopping times involves an examina-
tion of their expectation, E,. There is a strong relationship between the random

distribution 7 and stopping times which is given in the following proposition.

5.1.1 Proposition

Let & be a random walk on a group G. Let T € N be a non-zero stopping time

such that {&p = e and E,/T < oo. Let g € G. Then

E,(number of visits to g before time T)) = E,T/|G|

Proof. Taking the approach of [5] (Proposition 4, Chapter 2),
write p(g) = E,(number of visits to g before time 7). Now

_plg) _ plg)
M) =@ = BT

is a probability measure on G. Next it is claimed that

> Ab)p(t, g) = Ag). (5.1)

teG

To see this note that

1 oo
TZM(fk =9, > k).
k=0

i

If g = e, then pu(§ = e) = p(§r = e¢) = 1. Also, for g # e, by hypothesis,
w(& = g) = u(&r = g) = 0. Therefore, in the reindexing & — &11, the term
w(& = g) is replaced by p(&r = ¢g) (in the event T'= k + 1). Thus

1 o0
)\(g)ZETZ (Cey1 =9, T > k)
KT k=0
ZZ (& =tT >k &1 =9g)
“ k=0 teG
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By the Markov property,

Mg) = 5 0 S nlG = 1.7 > K)ol o)
BT k=0 teq@
= g(t%p(t, 9) =Y _ Ab)p(t,9)
teg H teG

Thus it is shown that AP = A, and so A is in fact the unique stationary distribu-

tion. Consequently

5.2 Strong Uniform Times

Consider the following shuffling scheme. Given a deck of n cards in order remove
a random card and place it on the top of the deck. Repeat this shuffle until
the random time 7" when every card in the deck has been touched. This T is
a stopping time and further every arrangement of the deck is equally likely at
this time. Call such a stopping time a strong uniform time: a stopping time T’

such that u(ér = g) = 1/|G|. Diaconis [12] remarks that this is equivalent to
(k= g|T < k) =1/|G|.

Aldous & Diaconis [3] gives a classic account of strong uniform times. For
many applications, including the random to top shuffle, the classical coupon col-
lector’s problem is required knowledge. Consider a random sample with replace-
ment from a collection of n coupons. Let T" be the number of samples required

until each coupon has been chosen at least once.
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5.2.1 Coupon Collector’s Bound

In the notation above, let k = nlogn + cn, with ¢ > 0. Then

w(T>Fk)<e® (5.2)

Proof. The proof is standard but this is taken from [12]. For each coupon b, let
Ay be the event coupon b is not drawn in the first k draws. The probability of
not picking b once is 1 — 1/n, hence u(A,) = (1 — 1/n)*. Thence

w(T > k) <UAZ,><ZMAI, —n(l—l) <ne M =¢"C o

Recall the separation distance s(k). The separation distance is related to

strong uniform times via the following theorem:

5.2.2 Theorem

If T is a strong uniform time for a random walk driven by v € M,(G), then for
all k
I — 7|l < s(k) < (T > k) (5.3)

Conversely there exists a strong uniform time such that the rightmost inequality

holds with equality.

Proof. Variation distance is controlled by separation distance so it suffices to
prove the rightmost inequality. Again taking the approach of [12], let ko be the
smallest & such that u(7T < kg) > 0. The inequality (5.3) holds if £ = oo and for
k < kg. For k > kg, s € G:

s(k) <1—|Glv*(s) <1 - |Glu(G =5, T < k)
s(k) < 1= |Glu(& = s|T < k) -u(T < k)
=1

<1—p(T < k) = (T > k)

See [12] (Theorem 4, Chapter 4C) for the converse result e
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This result along with the coupon collector’s bound applies immediately to
the random to top shuffle. The upper bound proved here is supplemented by
the (tricky) second result from [12] to yield another example of a random walk

exhibiting cut-off:

5.2.3 Theorem

For the random to top shuffle, let k = nlogn + cn. Then

| — 7| < e¢ for ¢ >0, (5.4)

|v* — 7| = 1 as n — oo, for negative ¢ = c¢(n) — —oo (5.5)

5.3 Coupling

Coupling is a theoretically stronger method than that of strong uniform times.
A coupling takes a random walk ¢ along with the random walk IT (with random
distribution) and couples them as a product process (£,1I). The interpretation
being that the two random walks evolve until they are equal, at which time they
couple, and thereafter remain equal. More formally a coupling of a random walk
¢ (with stochastic operator P) takes a ‘random’ operator I' on M,(G) x M,(G)
and uses it as an input into (&, II) such that the marginal distribution of the first
factor is precisely the distribution of £&. The operator must be random in the
sense that I'(y,7) = (uP, 7). Hence I'(v** 1) = (v**1, 7). The operator must
act on M,(G) x M,(G) in such a way that the & begin to match up with the II,
until all the elements lie along the diagonal: {&r = Ily. That is after T' steps the
process will have the same distribution as the second process: that is after the
stopping time k& = T steps the walk will be random. Call such a T a coupling
time. For appropriate couplings, the coupling time, 7', may be calculated. To
make this argument precise a lemma from [12] about marginal distributions is

required.
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5.3.1 Lemma

Let G be a finite group. Let py, po € My(G). Let p € M,(G x G) with margins
pa, po. Let A ={(s,s):s &G} be the diagonal. Then

1 — pa|| < p(A°)

Proof. Following Diaconis [12], let A C G. Thus

|11 (A) = pa(A)] =[u(A x G) = p(G x A)
=|u((Ax G)NA) + p((A x G)NA%)
—u((G x A)NA) = u((G x A)N AT

The first and third quantities in the absolute sign are equal. The second and

fourth give a difference of two numbers, both smaller than p(A®) e

5.3.2 Corollary: Coupling Inequality

If T is a coupling time for a random walk driven by v € M,(G), then for all k
v~ < (T > k) (5.6)

Conwversely there ezists a coupling such that the inequality holds with equality.

Proof. Let u be the distribution of (&, 1I). Then p has marginal distributions

v** and 7. Lemma 5.3.1 implies that
[ — 7| < W(AC) = (T > k)

See [10] for a proof and discussion of the existence of an optimal coupling time
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5.3.3 Example: A Walk on the n-Cube [25]

Consider the walk on Z7 driven by the measure:

1/2 ifs=e
Un(8) i =14 1/2n if s = ¢; for some i (5.7)
0 otherwise.

An equivalent formulation is that a coordinate is chosen independently from
{1,...,n} and a coin flip determines whether the coordinate is flipped or not.
Consider the following coupling operator I'. Suppose & = >, a;e; and coordi-
nate j is chosen at random. If the coin is heads, then &1, = Zi# aei+(1—ay)e;
and the jth coordinate of ;11 = (1 — «;). If the coin is tails, &1 = & but the
jth coordinate of II;;1 = «;. From the marginal viewpoint of £, I' is identical
to sampling by v,. It remains to show that the coupling is suitably random (as
described above). Suppose coordinate j is chosen. The distribution of each coor-
dinate of IIj is uniform on {0, 1}. Suppose without loss of generality that the jth
coordinate of & is 1. With equal probability the jth coordinate of II;,; will be 0
or 1 by the coin flip, hence the coupling operator is suitably random. Hence the
coupling time is when all of the coordinates {1,...,n} have been chosen. The
bound on the coupon collector’s bound and the coupling inequality implies the

walk is random after nlogn steps.
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Chapter 6

Some New Heuristics

6.1 The Random Walk as a Dynamical System

Although the dynamics of a particle in a random walk are indeed random, the
dynamics of its probability distribution certainly are not. Indeed note the prob-
ability distributions {v**}1en evolve deterministically as {°P* : k € N}. Thus
the random walk has the structure of a dynamical system {M,(G), P} with fixed
point attractor {m}. The two canonical categories of dynamical systems (for
which there is an existing literature of powerful methods e.g. [30]) are topolog-
ical and measure preserving dynamical systems. Unfortunately at first remove
{M,(G), P} appears too coarse and structureless to apply any of these power-
ful methods. Also the mapping function P is not necessarily invertible and this
poses further problems. Indeed in many examples of walks exhibiting cut-off, P
may be seen to be singular. Hence the assumption that needs to be made on P
to put a structure on {M,(G), P} sufficient for application of dynamical systems
methods to the cut-off phenomenon is overly strict. A more fundamental problem
occurs in trying to put the structure of a measure preserving dynamical system
on the walk in that if a meaningful' measure is put on M,(G), the fact that

(M,(G))P* 7 {7} would imply that P is in fact not measure preserving.
—00

la measure x wouldn’t be very meaningful if k(M,(G)) = r({r})
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6.2 Charge Theory

Two features of the ergodic random walk suggest an obvious generalisation. The
first is that a stochastic operator conserves the unit weight of 1 € M, (G). Suppose
u € RIS is a row vector of weight ¢ in the positive orthant. A normalisation
ensures u/q € M,(G) hence uP/q has weight 1 and thus uP has weight ¢q. A
simple calculation shows that given any row vector u € Rl of weight ¢, uP
also has weight ¢q. Therefore stochastic operators are weight preserving. This
immediately implies that the left eigenvectors of an ergodic stochastic operator

are of weight zero: u; P = \ju; (except u; of course).

Secondly an ergodic stochastic operator converges to U = [1/|G|] (the matrix
with all entries equal to 1/|G]), so that given a weight 1 row vector u, uP™ con-
verges to m. In particular, if & is distributed as any signed probability measure
(or charge: a signed measure on G such that p(G) = 1) p, the random walk will
still converge to the random distribution. This allows an all manner of gener-
alisations. For example, consider the signed stochastic operator Q = [p(ht™!)]
generated by a signed probability measure p. Under what conditions will 6°Q"

converge to the random distribution?

6.3 Invertible Stochastic Operators

In general a random walk need not start deterministically at e, but rather in
an initial distribution p = >, ayd’. However uP" = " oy (6'P™). By right-
invariance all the 6' P — 7 and hence uP™ — 7 for any initial distribution. In this
sense there is a loss of information about initial conditions: the walk forgets where
it began, where it was and is totally random. The dynamical systems community
make distinctions between the behaviour of invertible and non-invertible maps,
however this approach has not been exploited for the case of a random walk on

a group.
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It would be desirable to quantify the ‘folklore thesis’ that [23]:

The loss of information about initial conditions, as the iteration pro-
cess proceeds in a chaotic regime, is associated with the non-invertibility
of the mapping function... Hence system memory of initial conditions

becomes blurred.

Consider the case of a singular and symmetric stochastic operator P. The
spectral theorem implies R/ has a basis of (left) eigenvectors of P. Hence R!“! has
an eigenspace decomposition @ V;, where V; := ker(\I — P), where {)\; : t € G}
are the eigenvalues of P (with the convention \; = 1). Consider M,(G) C RI¢l =
D, V.. With a non-trivial kernel P, can ‘destroy information’ and the naive
reaction to this would be to consider v** € V; @ ker P such that ||v** — 7| ~ 1.
Then ||[v**1 — 7| = 0 and there is cut-off. However given §¢ € @ V;, clearly P
kills the ker P terms at the very first iterate, P, so this heuristic is incorrect.
However in contrived examples the sampling could be done by v until vi* €
Vi @ ker P, but far from random then sampling by v, (or multiplying by P»)

would project onto V;. See Section 6.4 for more.

6.3.1 Proposition

A stochastic operator P is invertible if and only if the equation uP = w has the
unique solution u = .

If P is an tnvertible stochastic operator then the following hold:

7 u s an ergenvecror o 5 EN U 1S an ergenvecior o T.n particucar,
) Ifu i ' tor of P, th ' ' tor of P71, I ticul

7P~ =1 and P~'k =k for any constant function k € F(G).

(i) If {\ : t € G} are the eigenvalues of P, then {1/X\, : t € G} are the
eigenvalues of P~1. In particular, 1 is an eigenvalue of P~', and all other

eigenvalues of P~ have modulus greater than 1.
(iii) The signed probability measures on G, My(G), are stable under P~

(iv) For k € N, §°P~F € M,(G)\M,(G).
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Proof. If P is invertible uP = 7 has unique solution. If P is singular then the
kernel is non-trivial. Let u; # us € ker P be normalised such that v; := 7+ u; €
M,(G), then v; P = 7.

(i) and (ii) are basic linear algebra facts.

(iii) From (i) the row and column sums of P~! are 1. Thence let v € M;(G);

PG =3 (zvmpw, s>)

seG \tedG
= Zv(t) <Zp_1(t, 3)) o
teG seG

g

=1

(iv) From (iii), 6°P~* € M;(G). Assume there exists v € M,(G) such that
vP = 0°. Now vP(s) = (v, ps) must equal 6°(s) where p; is the row vector

equal to the s-column of P. By Cauchy-Schwarz:

(v, ps) | < Wllalpslla < W[ ][ps]a (6.1)

Because

vP(e) = (v,pe) = 1 = [Wll1llpellx

the second and third inequalities are equalities for s = e. The first equality
implies that v and p. are linearly dependent, v = kp.. As probability
measures must have weight 1, this implies v = p.. The second equality
implies that v and p. are Dirac measures. Hence v is a Dirac measure, say
09, and thus P is not ergodic (as ¥ is a subset of the coset {e}g, of the
proper normal subgroup {e}). Inductively given v € M;(G)\M,(G), there
does not exist v € M,(G) such that vP = v as v must have negative entries

but both v and P are positive o
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6.4 Convolution Factorisations of 7w

Take a deck of cards and transpose the top card with a random card. Next
transpose the second card with a random card (at or underneath the second)
and continue inductively until all but the second from bottom card has been
transposed. Apply the same shuffle to the 51st card ((51,51) or (51,52)). The
first card is random, the second is random and inductively all the cards are
random. Hence considering the group S, and the measures v; uniform on the

transpositions {(,%), (i, + 1),...,(i,n)} the random distribution factorises as:
T = Up_ K-+ *Uykl] (6.2)

Urban [31] considers the question: given a group G and a symmetric set of gener-
ators X, does there exist a finite number of convolutions of symmetric measures
{vi e M,(G):i=1,...,m} supported on ¥ such that (6.2) holds (with m rather
than n — 1 terms)? Urban uses Diaconis-Fourier theory (particularly Lemma
3.2.3) to show that if, at a non-trivial irreducible representation of G, p, the
Fourier transform of 1, x -+ x 14 is non-zero then (6.2) cannot hold. Briefly,
Lemma 3.2.3 states that at any non-trivial irreducible representation, 7(p) = 0;
and the Fourier transform of v, x - - - x 1 is easily computed via the convolution

theorem.

If v** = 7 for some finite k& € N then the results of Section 2.3 shows that
v = 7. In particular, as v is symmetric, P has an eigenbasis, and 1 is an eigenvalue
of P with multiplicity 1. Suppose for contradiction that v** = 7 for some k € N,
but v # w. Suppose 6¢ € V; @ ker P; then 0°P = w. However 0°P = v % §°,
however v x 0¢ = v and thus ¥ = 7. Hence at least one of the eigenvectors in the
eigenbasis expansion of ¢ is associated with a non-zero eigenvalue. Thus hence
v*¥ £ 1 for any k € N. Note that each of the v; induces a stochastic operator P

and (6.2) is equivalent to
U:Pmpmfl"'P2P1 (63)

Note that U is singular. If each of the P; are invertible then so is U, a contra-
diction. Therefore (6.3) cannot be true if each of the P; are invertible. Theorem

6 on page 49 of Diaconis [12] implies that each eigenvalue of V(p), where p is an
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irreducible representation, is an eigenvalue of multiplicity d,. In the case of an
Abelian group, the eigenvalues of P are simply given by {v(p;) : p; irreducible}
and the analysis breaks down to that of Urban’s as U(p;) # 0 is equivalent to 0 is

not an eigenvalue of P;i.e. P is invertible.

Example: Simple Walk on the Circle

Let n be odd and consider the set M of not-necessarily symmetric measures with
support ¥ = {£1} (ie. M = {y, € My(G) : v,(1) = p, v,(—1) =1 —p;p €
(0,1)}). Does 7 admit a finite convolution factorisation of measures from M?
For convenience denote g := 1 —p and « := p/q. Consider the stochastic operator

associated to vp:

0 p 0O 0 ¢q

g 0p 0O -0
P,=10g¢0p-- 00

p 000 --- ¢qg O

Apply the elementary row operation r; — r;/q to each row and permute the rows

by (rnTn—1rn—g2---T1):

1 0 a O 0 0
1 « 00
P, =
o 0 0 10
0O a 00 --- 01

Now? eliminate by r,_; — r,_1 — ar; and 1, — 1, — ars:

1 0 « o -~ 00

01 0 o 00
P, =

00 —a®> 0 10

00 0 -—ao? 0 1

%if p < ¢ then a < 1 and Gershgorin’s Theorem implies that P, is invertible. If p > ¢, then
a > 1 and elementary row operations give P, invertible similarly. Gershgorin cannot deal with
the case p = ¢ however. Gershgorin can show P, is invertible with n even when p # ¢, but on
this support, the walk is not ergodic.
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Now suppose n = 2m + 1 and continue inductively until:

1 0 0 0
P, = .

0 (=1)m*tta™ 1 0

0o --- 0 (—1)mHam™ 1

A final application of r, 1 — 7,1 —(=1)""a™r, 5 and r, = r,—(=1)""ta™r,

yields:
1 0 0
P, =
0 1 (_ 1)m+2am+1
0 0 1

Hence the P, have n pivots and are thus invertible so a finite convolution of

measures from M is never random.

Urban proves a stronger result using the Diaconis-Fourier theory; namely if
M is a set of measures symmetric on {s € Z, : |s| < n/4} then there is no
m-factorisation. A quick look at the representation theory of Z, shows that the
Fourier transform of these measures is bounded away from 0 and hence so are the

eigenvalues.

Example: Urban’s Transposition Shuffle

Consider the convolution described by at the start of this section. The final
driving measure v,,_; = (6° + §~1™)) /2 generates a singular stochastic operator
P,_1 by Proposition 6.3.1 (v) and a slight rearrangement shows that all of the v;

generate singular stochastic operators.
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Open Problem

This leads onto the interesting question:

For what measures v € M,(G) is the associated stochastic operator

tnvertible?

A sufficient condition for invertibility guaranteed by Gershgorin’s circle theorem

is that v(e) > 1/2.

6.5 Geometry of the ||v** — || Graph

Consider an invertible symmetric ergodic stochastic operator P. Due to the fact
that the eigenvalues of P~! (except 1) are all modulus greater than 1, the sequence
|*(=*) — 7|| is monotonically increasing to infinity as & — co. Hence the graph

looks something like:

v Ko

6

k

Figure 6.1: As k — —oo, v** leaves M,(G) and becomes a ‘big’ signed measure.
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The assumption could be made that in this case the graph must be ‘concave
up’ and similarly to g(x) in Figure 4.3, does not exhibit cut-off. Suppose an

invertible stochastic operator did show cut-off:

A

20

k

Figure 6.2: One could conjecture that the non-dashed line behaviour, supposedly
corresponding to an invertible stochastic operator, with two ‘turning points’ be

impossible.

Instead one might think that somehow the dashed line behaviour is necessary
for cut-off to hold — and of course this behaviour cannot hold when P is invertible.
This leads to the conjecture: P invertible implies no cut-off. However, in general,
P~™({6¢}) is non-empty, and if a representative w,, from this set is chosen the
graph of ||u,, P™** — 7| will exhibit the ‘non-dashed line’ behaviour. Note that
for the random walk on the cube with loops there is no charge that is sent to §¢

by P. This leads onto another interesting question:

Open Problem

For what singular stochastic operators P generated by v € M,(G) does
there exist a charge uw € My(G) such that uP = 0¢?
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Unfortunately the stochastic operator for the simple walk with loops on Z%
with n even is invertible. If true the conjecture would have placed the problem in
a very precarious position. Suppose (G, %,) is a family exhibiting the cut-off phe-
nomenon (so that the stochastic operator is singular), such that e € supp(v,,) =

Y,. Let £ € (0,1/2), and transform the v, as:

% +e ifts=e
v (s):= Ly (6.4)
s ifs e T\ {e}

Then by Gershgorin’s circle theorem P’ would be invertible and hence two random
walks with the same support need not exhibit the same behavior: the condition
for cut-off to hold would not be on the support only. Unfortunately for those

active in the field one would assume the condition is indeed this complex.
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Chapter 7

Appendix

7.1 Proof of Lemma 3.4.1

1. Claim:
‘cos <]z>‘ = )COS (l%)‘ for any [ € [j], (7.1)

n
Suppose j = [ mod n, where [ € {0,1,...,n — 1}, so that j = [ + mn for

some m € Z. Then
cos (jz> = cos ((l + mn)z>
n n

()
=cos| —+mm
n

™ Lo,
= COS — CcOoSmm — Sl — SIN T

lm
— (=1 =
(—1)™ cos .
Now let a; = cos(nt/n) and b, = cos(2nt/n), and note that for ¢ =
1,2,...,(n—1)/2:
‘b(nth)/g‘ and |b(n7t)/2| if ¢ odd
|| = (7.2)
|bt/2‘ and |bn_t/2’ if t even
Hence as (z)* = |z|*

(n—1)/2

Zcos (2mt/n) =2 Z cos®(nit/n) e
t=1
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2. Let h(z) = log (e‘”2/2 cos ZB); so that h/(x) = x—tanz and h/(z) = 1—sec® z.
Thus A”(xz) < 0 on [0,7/2] and so with A'(0) = 0, h(x) is a decreasing
function in z. In particular, h(x) < h(0) = 0 and as log is an increasing

function, e*’/2cosz < 1, for x € [0,7/2]

3. In the first instance:

o0

Z 6_3jx - 1 _16—395

j=0

is a convergent geometric series when = > 0. Now

00 oo
E :6—391 — § :6—3(]—1)115'
J=0 J=1

Also j2 —1 > 3(j — 1) for each j € Ny. Hence, as €® is increasing, for all

j €Ny, e @7 < ¢=36-D7_and so

00 00 0o
Z e_(j2_1)z < Z e—3(j—1);t _ Z G—Sjw °
j=1 j=1 =0

4. Taking the approach of [7], let h(x) = log (e‘”2/2+‘”4/2 cos x);

h(0) =0

W(z) =z +2° — tanz| =0
W'(z) = 32% — tan® z =0
" (x) = 6z — ZSeCthanx’gC:O =0
h"(z) = 6 + 4sec’z — 6sec’ x

This is a quadratic in sec? z which is positive when |secz| < /1 + +/10/3.

This translates into better than x € [0,7/6] o
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7.2 Proof of Lemma 3.5.1

1. In the first instance:

92 _
1 (n+1 1)21_2+ 2 _ 1 — 21
n+1 n+1 n+1
So that
L2 N (21 DN
n+1 B n+1
Secondly,
ny\ n . nt n!
l n+1—1) lln—-1) m+1-Dw—w+1-1))
B n! 1 1
S (I=-Dn=D'"|l n+1-1
B n! ‘n+1—-1-1
S (I=Din=0D"|In+1-1)
! I _
_ n! n+1 ZZ] - 0
(=D n=0![In+1=1)] i<ns2
That is, if [ < n/2,
n n
>
()= (1)
2. By definition,
a\  al _a(a—l)(a—Z)---(a—b+1)<a_b .
b)  bl(a—0b) b! ~ b
3. It suffices to show
2; \*
) = — < —J —je=:9(J .
f() 10g<1 n+1) < —jlogn — je=:g(j) (7.3)

as exp is an increasing function. Now writing k = (n + 1)(logn + ¢),

f(1) = %(nqt 1)(logn + ¢) log (1 — n2—i1) , and
g9(1) = —=(c +logn)

Now ¢ =4k/(n+ 1) —logn so ¢ +logn = 4k/(n + 1). Therefore

0=t = (557) [ (557

7




This is negative (f(1) < g(1)) if

1 n—1
1+ = 1)1 — 1 <0
+2(n+ )Og<n+1>_
o1 — 1 2
0 J—
gn 1= n+1
n+1 2
< h =1 — 0
(n) Og(n—l) n+17
Now h(2) =log3 —1 >0 and
n—+1 2
li | — = 0.
e Og(n—l) n+1
—1
Differentiating with respect to n,
2 2 4
B (n)=— + = — <0.

n?—1 (1+mn)? (n+1)2(n—-1) —

Hence h(n) is monotone decreasing from h(2) > 0 to 0 so is positive. Hence

f(1) < g(1). Now differentiating with respect to j,

(n+1)(c+logn) 4k < 0
n+1-2j  n+1-25 0

F16) = -

Also

4k
n+1

§(j) = —c—logn = —

Finally as j > 0, f'(j) < ¢'(j), forall j <n/2 e
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