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Prologue I: Functions and Fractions

These notes are designed to accompany the course MS2001 Differential Calculus,
which provides a more detailed introduction than MS1001 to an area of mathematics
that was developed to deal with problems in the physical sciences and now has many
applications in this field and beyond.

In this course we deal with functions of one real variable, that is functions such as
x7 − 4x4 + 8x3 − 12x2, 2 sin 3t + t log t or etan x, where the argument is a real number

x, or t, or. . . Complex numbers such as 2+3i (where i =
√
−1) do not feature in this

course.
Such functions will in general be denoted by lower case letters such as f , g or h, or

f(x), g(t) or h(x) if we wish to stress the argument. Note that it is not always possible
to evaluate a function for all possible values of its input variable. For example log x
is only defined whenever x > 0, and tan x is only defined for x 6= ±π

2 ,±3π
2 , . . . That

is, they are only defined on a subset of the set of all real numbers (which is denoted
by the letter R). If we write f : I → R then we mean that f is a function defined on
the subset of I of R, and taking values in the set R of all real numbers. That is, f(x)
is a real number that can be evaluated/makes sense whenever we choose any value x
from the set I.

In a certain sense the main mathematical challenge posed (and solved) by this
course arises from the fact that division by 0 is not allowed. In particular expressions
such as 3

0 or −7
0 are meaningless, and should not appear in your work. If we divide

one function by another then we must take note of when the denominator is zero.
For example consider the function

f(x) =
x

sinx
.

This is not defined whenever sin x = 0, that is when x = 0,±π,±2π, . . . However
consider what happens as x gets closer and closer to 0:

x = 0.5 0.2 0.1 0.01 · · ·
f(x) ≈ 1.04291482 1.00669791 1.00166861 1.00001667 · · ·

The value of f(x) gets closer and closer to 1. However it is still incorrect to write
f(0) = 0

sin 0 = 0
0 = 1, since 0

0 is undefined. But it is precisely the limiting behaviour

of fractions of this sort where both top and bottom approach 0 that we would like to
understand and deal with rigorously.

On a related note, given two functions g and h the equation

g(x)

h(x)
= 0

has a solution when g(x) = 0. The value of h(x) (unless it is also 0) is immaterial.
If the above equation holds there is certainly no reason to conclude that g(x) = h(x)

— if this latter equation is true (and both are nonzero) then g(x)
h(x) = 1.
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Prologue II: Notation for Logic

A proposition in logic is a statement that is either true or false. For example

p1: x + y = y + x for all real numbers x and y. (TRUE)

p2: There are 10 month in the year. (FALSE)

Often the proposition may depend on a variable, for example

p3: It is August.

p4: x2 − 4x + 3 = 0.

p3 is only true for 31 days each year, but never during the first semester in UCC. For
p4 note that x2−4x+3 = (x−1)(x−3), and so p4 is true if x = 1 or x = 3, otherwise
it is false.

Given propositions p and q, we write p ⇒ q (read “p implies q”) if q is true
whenever p is true. For example, if we set

p5: Next month is September,

p6: x = 1,

then p3 ⇒ p5, since if it is now August then next month it will be September — this
logical deduction is valid no matter what month it currently is. Similarly p6 ⇒ p4,
since if x = 1 then 12 − 4 × 1 + 3 = 0. Note also that if p4 is false, i.e. x is different
from 1 or 3, then p6 must be false.

For our examples we also have p5 ⇒ p3, which can be written p3 ⇐ p5. So if
p3 is true then p5 is true; conversely if p5 is true then p3 is also true. Such pairs of
propositions are called equivalent, which is written p3 ⇔ p5 (read “p3 (is true) if and
only if p5 (is true)”).

However, if p4 is true then either x = 1 or x = 3. If x = 3 then p6 is not true, i.e.
p4 6⇒ p6 (“p4 does not imply p6”). Thus these propositions are not equivalent. All
we can say is that p6 is a sufficient condition for p4, or p4 is a necessary condition for
p6.

Mathematical proofs start with clearly stated assumptions and then proceed via
a sequence of propositions, proving that each implies the next, until we end up with
the desired conclusion. That is, our statements are usually linked by ⇒.
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INEQUALITIES

1 Inequalities

Definitions and axioms

Throughout this course the set of real numbers (that is, the points on the x-axis) will
be denoted by the symbol R. The geometrical model is a line extending infinitely far
in both directions, with an arbitrary point chosen to represent 0.

��

0
R

Suppose we pick two points a and b on the line (written a, b ∈ R). If a is to the
left of b then a is less than b, or, equivalently, b is greater than a, and this is written
a < b or b > a. Similarly a ≤ b means that either a < b or a = b. We write a < b < c
(or a < b ≤ c, or . . . ) if a < b and b < c — we must have the inequality symbols
pointing in the same direction for this to make sense. The statement a > b < c is not
particularly useful or meaningful as it does not indicate the relationship between a
and c.

A finite subinterval of R is the collection of all points between two numbers a < b:

��������������
��

�
�
�
�

a b

We can leave a in or out of this collection, and similarly for b, giving overall four
possibilities:

(a, b) = {x ∈ R : a < x < b} neither included

(a, b] = {x ∈ R : a < x ≤ b} a excluded, b included

[a, b) = {x ∈ R : a ≤ x < b} a included, b excluded

[a, b] = {x ∈ R : a ≤ x ≤ b} both included.

We can also consider infinite subintervals: given a point a ∈ R we can consider all
points to the right of it, or to the left.

����������������������a

Again, we can leave a in or out of this collection, and so end up with the four
possibilities:

(a,∞) = {x ∈ R : x > a}
[a,∞) = {x ∈ R : x ≥ a}

(−∞, a) = {x ∈ R : x < a}
(−∞, a] = {x ∈ R : x ≤ a}
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Definitions and axioms

By taking unions of such sets we can combine intervals to form more complicated
sets. For example (−∞, 1) ∪ [2, 3] consists of all those numbers that are strictly less
than 1 or lie between 2 and 3 inclusive.

We will assume the following axioms, or properties, of inequalities, where a, b, c ∈
R are any three real numbers:

I1: Exactly one of a < b, a > b or a = b is true.

I2: If a < b and b < c then a < c.

I3: If a < b then a + c < b + c.

I4: If a < b and c > 0 then ac < bc; if a < b and c < 0 then ac > bc.

Note. I2–I4 hold with < replaced by ≤.

Having stated our assumptions we shall now show that various well-known results
about inequalities are actually consequences of these assumptions.

Proposition 1.1. Suppose that a, b, c, d ∈ R.

(i) If a < b and c < d then a + c < b + d. (Addition of like inequalities)

(ii) If c > 0 and d > 0, or if c < 0 and d < 0, then cd > 0; if c < 0 and d > 0, or if

c > 0 and d < 0, then cd < 0.

(iii) 1 > 0.

(iv) a > 0 if and only if
1

a
> 0; a < 0 if and only if

1

a
< 0.

(v) If a < b and c > 0 then
a

c
<

b

c
; if a < b and c < 0 then

a

c
>

b

c
.

(vi) If 0 < a < b and 0 < c < d then ac < bd and
a

d
<

b

c
.

Proof. (i) By I3 we have

a + c < b + c and b + c = c + b < d + b = b + d,

hence, by I2, a + c < b + d.

(ii) Suppose c > 0 and d > 0. Then we can apply I4 with a = 0 and b = d to get

ac < bc ⇒ 0 × c = 0 < cd,

as required.

If c < 0 and d < 0 then we can apply I4 with a = d and b = 0, this time to get
cd > 0. The other two statements can be proved similarly.

(iii) Now 1 6= 0, so by I1 either 1 < 0 or 1 > 0. But, in either case, we can apply (ii)
with c = d = 1 to get cd = 12 = 1 > 0.
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INEQUALITIES

(iv) Suppose a > 0. Again, since 1
a 6= 0, we must have 1

a < 0 or 1
a > 0. If 1

a < 0,
then by (ii) (with c = a and d = 1

a this time) we would have 0 > cd = a × 1
a = 1,

contradicting (iii). Hence we must have 1
a > 0.

We have shown that if a > 0 then 1
a > 0 — and this is true for any positive

number. If, on the other hand we are given a and told 1
a > 0, then we now know that

1
1/a = a > 0. These two implications together give

a > 0 ⇔ 1
a > 0.

That a < 0 is equivalent to 1
a < 0 can be proved in the same way.

(v) This is immediate from I4 and (iv), since if c > 0 then 1
c > 0, and if c < 0 then

1
c < 0.

(vi) We have a < b and c > 0, and so ac < bc by I4. Also, c < d and b > 0, and so
bc < bd by I4 as well. Thus, by I2,

ac < bd

as required. Finally, cd > 0 by (ii), so by (v)

ac

cd
<

bd

cd
⇒ a

d
<

b

c
.

Of particular importance to us are (ii), (iv) and (v). Indeed, it follows that if
we take any n nonzero numbers a1, a2, . . . , an, and choose any number m satisfying
1 ≤ m < n, and then calculate

a1 × a2 × · · · × am

am+1 × · · · × an

then the result will be positive if an even number of the original n numbers ai are
negative, otherwise it will be negative.

Sketching functions; the quadratic

Definition 1.2. A function f : R → R is even if f(−x) = f(x) for all x ∈ R. It is
odd if f(−x) = −f(x) for all x ∈ R.

Thus a function is even if it is invariant under reflections in the y-axis, and odd
if it is invariant under rotations through π about the origin.

Definition 1.3. Let I ⊂ R be an interval. A function g : I → R is increasing on I if
g(x) ≤ g(y) whenever x, y ∈ I such that x ≤ y. It is strictly increasing if g(x) < g(y)
whenever x, y ∈ I such that x < y. What it means for g to be (strictly) decreasing

is defined similarly.

Very simple examples of even and odd functions include constant functions (i.e.
y = b for any b ∈ R) and the function y = x respectively:�
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y = x

y = 11
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Sketching functions; the quadratic

Note that the function y = x is strictly increasing on the whole line R, and the con-
stant function is both increasing and decreasing on R, but neither strictly increasing
nor strictly decreasing.

Other important examples include y = cos x, which is even, and y = sin x which
is odd. Note that y = sinx is (strictly) increasing on the interval [−π

2 , π
2 ], decreasing

on [π2 , 3π
2 ], and so on.

y = sin xy = cosx

ππ/2

−3π/2

−π

The behaviour of constant functions and y = x generalises to higher powers of n,
as can be proved using our consequences of inequalities:

Proposition 1.4. For each positive integer n ≥ 1 let fn : R → R be the function

fn(x) = xn. Then fn is even if n is even, and odd if n is odd. Moreover each fn is

strictly increasing on the half-line [0,∞).

Proof. To see the first part about even or oddness of fn, we can write

fn(−x) = (−x)n = (−1 × x)n = (−1)n × xn =

{
xn if n is even,

−xn if n is odd.

For the other part, choose any n ≥ 1. Then note that for any a, b ∈ [0,∞) we have

an − bn = (a − b)(an−1 + an−2b + an−3b2 + · · · + abn−2 + bn−1).

In particular for n = 2 and n = 3 we have

a2 − b2 = (a − b)(a + b) and a3 − b3 = (a − b)(a2 + ab + b2).

But we have chosen a, b ≥ 0, hence any number of the form an−kbk−1 is nonnegative
by part (ii) of Proposition 1.1. Thus, by part (i) of Proposition 1.1,

an−1 + an−2b + an−3b2 + · · · + abn−2 + bn−1 ≥ 0.

Now if a > b ≥ 0 then in particular a > 0, hence an−1 > 0, and it follows that the
above inequality is in fact a strict one. Thus an − bn is the product of two positive
numbers (since a − b > 0), hence positive by part (ii) of Proposition 1.1. That is,

a > b ⇒ an − bn > 0 ⇒ an > bn (by I3)

and so fn is strictly increasing.
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INEQUALITIES

In fact the above proof shows a little more, since if we have any a, b ∈ [0,∞) that
satisfy an > bn, then at least one of these two numbers must be nonzero, and hence
positive, and so

an−1 + an−2b + an−3b2 + · · · + abn−2 + bn−1 > 0

again, from which it follows that

a − b =
an − bn

an−1 + an−2b + an−3b2 + · · · + abn−2 + bn−1
> 0

by part (v) of Proposition 1.1. Hence we have in fact shown the following:

Corollary 1.5. For any integer n ≥ 1 and any a, b ∈ [0,∞) we have

a < b ⇔ an < bn.

From the information above we can deduce some of the features of the following
graphs of the powers of x:

y = x y = x2

y = x3 y = x4

However, when drawing the above we have not actually demonstrated that our
functions are continuous, that is, that the graph has no gaps or jumps in it. That is
the subject of the following chapter on limits.

The powers of x have been analysed and sketched above by using our axioms
for inequalities between real numbers. Other functions will in general be more com-
plicated to sketch, but often we can recognise a function as a translation or scaled
version of a known function such as these powers.

Suppose we know the graph for some function y = f(x), and are given a number
a ∈ R.

7



Sketching functions; the quadratic

(i) The graph for f(x− a) is got by translating the original a units horizontally to
the right.

(ii) The graph for f(ax) is got by stretching the original horizontally by a scale
factor of 1

a — if a < 0 this involves a reflection in the y-axis and scaling by
1
−a > 0.

(iii) The graph for f(x) + a is obtained by translating the original vertically by a
units.

(iv) The graph for af(x) is obtained by stretching the original vertically by a scale
factor of a — again if a < 0 this involves a reflection in the x-axis and then
scaling by −a > 0.

Example 1.6. Consider the function y = sin x. The functions sin(x − π
2 ), sin 2x,

sinx + 1 and −3 sin x are obtained by applying the relevant rules from above to give:

sinx sin(x − π

2
)

sinx + 1

sin 2x

−3 sinx

For example sin(0− π
2 ) = sin(−π

2 ) = −1, the value of sin x taken π
2 units to the left,

sin(π
2 − π

2 ) = sin(0) = 0, etc. Similarly sin(2× π
4 ) = sin π

2 = 1, sin(2× π
2 ) = sin π = 0,

etc., so that the oscillations occur twice as fast. The function −3 sin x can be obtained
by two transformations; firstly considering 3 sinx which stretches the graph by a factor
of 3 in the y-direction, then multiplying by −1, which is the same as reflecting in the
x-axis.

A combination of all of these rules allows us to fully understand any quadratic
function, whose general form is

y = ax2 + bx + c,

8



INEQUALITIES

where a, b, c are constants with a 6= 0 to ensure that there is an x2 term. This can be
rewritten as follows:

y = a
[
x2 +

b

a
x +

c

a

]

= a
[(

x2 + 2 × b

2a
× x +

( b

2a

)2)
− b2

4a2
+

c

a

]

= a
[(

x +
b

2a

)2
− b2 − 4ac

4a2

]
= a

(
x +

b

2a

)2
+ c − b2

4a
.

That is, the general quadratic can be obtained from the graph for y = x2 by first
translating by − b

2a to the right, then translating b2−4ac
4a downwards, and finally by

scaling by a factor of a in the y-direction. Alternatively the second and third steps
could be thought of as scaling vertically by a, then translating up by c− b2

4a respectively.
In either case the translations do not change the shape of the graph; the scaling by a
will not change the shape if a > 0, but flips it over if a < 0. Hence every quadratic
has one of the two following forms:

y y

x

x

y = 4ac−b
2

4a
= c − b

2

4a

y = c − b
2

4a

x = − b

2a

x = − b

2a

a < 0 (b < 0)a > 0 (b < 0)

Moreover this factorisation leads to the well-known formula for the roots of the
quadratic. There is a solution to ax2 + bx + c = 0 if and only if

(
x +

b

2a

)2
=

b2 − 4ac

4a2

⇔ x +
b

2a
= ±

√
b2 − 4ac

4a2
= ±

√
b2 − 4ac

2a

⇔ x =
−b ±

√
b2 − 4ac

2a

In particular we need b2 − 4ac ≥ 0 if the square root is going to yield a real number.
If b2 − 4ac > 0 then

√
b2 − 4ac > 0 and we have two distinct real roots — so the

graph cuts the x-axis at two points. If b2 − 4ac = 0 then there is a repeated real root
— the graph just touches the x-axis when x = − b

2a . If b2 − 4ac < 0 then there are
no real solutions, only complex roots, and hence no intersection with the x-axis.

Finally, recall that y = x2 is an even function, so symmetrical about the y-axis.
For y = ax2 + bx + c, since we translated by − b

2a to the right, this symmetry is now

9



Inequalities involving rational functions

about the line x = − b
2a . In particular the minimum (if a > 0) or maximum (of a < 0)

values occurs for x = − b
2a , and if there are roots then they are equally spaced about

this point.

Exercise 1.7. Sketch the graphs for

(i) (x − 2)2 (ii) x2 − 2x − 3 (iii) − 2x2 + x − 5

Example 1.8. A farmer has 800m of fencing and wants to fence off a rectangular
field that borders a straight river. He needs no fence along the river. What are the
dimensions of the field that has the largest possible area?

Solution. Let x denote the length of the side perpendicular to the river and y the
length of the side parallel to the river. Thus our field looks like:

y

x

If we write down an equation that links the lengths x and y as marked to the given
perimeter of 800m, solve this to get x in terms of y, and then use this expression to
write the area, A, as a function x, we obtain a quadratic function. The maximum of
A is thus easily found.

Fill in the details of this argument.

A

200

400

80000

x

Inequalities involving rational functions

Definition 1.9. A polynomial is any function that can be written as a finite sum of
multiples of positive powers of x together with constant functions. That is f : R → R

is a polynomial if it is of the form

f(x) = anxn + an−1x
n−1 + · · · + a2x

2 + a1x + a0.

10



INEQUALITIES

If the constant an 6= 0 in the above then we say that f is of degree n. So a quadratic
is a polynomial of degree 2.

A rational function is any function g that can be written as g(x) = p(x)/q(x) in
terms of two polynomials p and q.

So, for example, each of the functions fn(x) = xn that we considered above are
polynomials, where fn is of degree n. Similarly the following are all polynomials

x3 − 2x + 7; −2x7 + 3x6 − 5x4 − x3 + 2x2 + 17x − 1; x31 − x17

of degree 3, 7 and 31 respectively, whereas

x3 − x2 + 3x + 8

x5 + 7x4 − x2 + 9
and

x12 − 9x9 + 7x5 + 2x

10x8 + 9x7 + 8x6 + 7

are both rational, but not polynomials. Note that the value of a polynomial function
is defined for all values of x since all we are doing is multiplying and adding numbers
together. The situation with rational functions is in general more complicated since
division has now come into play, and the denominator may be zero. For example we
have x3 + 2x2 − x − 2 = (x + 2)(x + 1)(x − 1)

⇒ x4 − x2

x3 + 2x2 − x − 2
=

x4 − x2

(x + 2)(x + 1)(x − 1)

and so the function is not defined when x = −2, −1 or 1. Indeed, any polynomial
of degree greater than 2 can be factorised into polynomials of lower degree according
to:

Theorem 1.10 (Fundamental Theorem of Algebra). Any polynomial (over R)
can be written as a product of polynomials of degree at most 2.

For example, our polynomial of degree 3 appearing in the denominator could be
written as a product of polynomials of degree 1, each of which equals 0 for exactly
one value of x. On the other hand we have

x3 − 3x2 + x − 3 = (x − 3)(x2 + 1),

and the factor x2 + 1 cannot be broken up any further if we are to only use real
coefficients. Indeed, since x2 ≥ 0 for all x ∈ R we have x2 +1 ≥ 1, and so there are no
(real) solutions to the equation x2 +1 = 0. Hence we cannot write it as (x−a)(x− b)
for some a, b ∈ R. On the other hand, if we allow ourselves to use complex numbers
then we have x2 + 1 = (x − i)(x + i), where i2 = −1, and so

x3 − 3x2 + x − 3 = (x − 3)(x − i)(x + i).

Another version of the Fundamental Theorem of Algebra, in which coefficients and
roots are allowed to be chosen from the complex numbers C says that any polynomial
in this setting can be written as a product of polynomials of degree 1.

We now discuss inequalities involving rational functions. So these functions in-
volve a single real variable x, and given a particular value of x the inequality may
or may not be satisfied. The solution set of an inequality is the set of all of those
numbers x that satisfy the inequality.
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Inequalities involving rational functions

Example 1.11. Find the solution set for the inequality 3x + 5 > 8x − 10.

Solution. We have the chain of equivalences

3x + 5 > 8x − 10

⇔ 3x − 8x > −10 − 5 (by I3, with c = ±(−8x − 5))

⇔ −5x > −15 (evaluating)

⇔ −5x

−5
<

−15

−5
(mult. by 1

−5/−5, using I4)

⇔ x < 3 (evaluating)

Thus the equality we started with is satisfied if and only if x is less than 3, and so
the solution set is (−∞, 3).

Example 1.12. Find the solution set of the inequality

x2 ≤ 4x − 3 (†)

Solution. Here we can first use I3 to get

x2 ≤ 4x − 3 ⇔ x2 − 4x + 3 ≤ 0 ⇔ (x − 1)(x − 3) ≤ 0.

The factors are both of degree 1, hence both are equal to 0 for exactly one value of
x, and change sign at this point. The points where the product (x − 1)(x − 3) can
change sign are thus x = 1 and x = 3, and this quadratic will stay the same sign
and be nonzero in between these two values. The behaviour of (x − 1)(x − 3) is thus
summarised by

x < 1 x = 1 1 < x < 3 x = 3 x > 3

x − 1 − 0 + + +

x − 3 − − − 0 +

(x − 1)(x − 3) + 0 − 0 +

Thus we see that (x− 1)(x − 3) ≤ 0 if and only if x ∈ [1, 3], and since this inequality
is equivalent to (†) it follows that this is also the solution set for (†).

�
�
�
�

�
�
�
�
��
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�
�
�
�

�� ��
��
��
��1 3

3

y

x

y = x2 − 3x + 4
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INEQUALITIES

Exercise 1.13 (S02 1(a)). Find the solution set of the inequality

x + 3

x − 1
<

x

x + 2
(x 6= −2, 1) (∗)

and mark this set on a diagram.

Note. When doing this exercise using the method outlined in these notes you should
end up with an inequality of the form f(x) > 0, and a number of points where the
function f(x) can change sign. At such points f(x) will either equal 0 or be undefined,
so certainly such points are not part of the solution set, and so separate columns for
them in your table are not required.

Another is that you should resist the temptation to multiply either side of (∗)
by (x − 1)(x + 2) to get rid of the fractions. The reason for this is that the sign

of the number (x − 1)(x + 2) depends on the value of x, so we do not necessarily
know if the number we are multiplying is positive or negative, and hence if we need
to reverse the inequality symbol. One way to get round this problem is to treat the
cases (x − 1)(x + 2) < 0 (when −2 < x < 1) and (x − 1)(x + 2) > 0 (when x < −2
or x > 1) separately. Another would be to multiply by the nonnegative number
(x − 1)2(x + 2)2. In both approaches one then needs to remember to exclude the
points x = −2 and x = 1 from any solution set that may be discovered, since our
original inequality does not make sense for these values of x.

Exercise 1.14 (S03 1(a)). Find the solution set of the inequality

x

x + 2
≤ 3

x − 2

The modulus function; obtaining bounds

Definition 1.15. The modulus function is the map | · | : R → R defined by

|x| =

{
x if x ≥ 0,

−x if x < 0.

The number |x| is known as the modulus or absolute value of x. The graph of the
function is

y

x

y = |x|

so in particular it is left unchanged by reflection in the y-axis. That is, this function
is even, since |−x| = |x| for all x ∈ R

13



The modulus function; obtaining bounds

Basically the number |x| is what we get by ignoring the sign of x if it is negative.
As a result, if we have the graph of some function y = f(x), then to draw the graph
of the function y = |f(x)| we take the part lying below the x-axis and reflect it in
that line. The part lying above remains the same, since in this case f(x) ≥ 0, hence
|f(x)| = f(x). For example, the graphs of sin x and | sin x| are:

y = sinx y = | sinx|

π

π−π −π2π 2π

−2π

−2π

Similarly the graphs of log x and | log x| are:

y = log x y = | log x|

The following are properties of |x| that we can prove easily from its definition:

Proposition 1.16. Let x, y ∈ R. Then

(i) |x|2 = x2; x ≤ |x|;
∣∣∣∣
1

x

∣∣∣∣ =
1

|x| if x 6= 0.

(ii) |xy| = |x||y|.

(iii)

∣∣∣∣
x

y

∣∣∣∣ =
|x|
|y| if y 6= 0.

(iv) |x + y| ≤ |x| + |y|.

(v)
∣∣|x| − |y|

∣∣ ≤ |x − y|.
Proof. (i) Now |x| = ±x, so for the first part we have |x|2 = (±x)2 = x2. For the
other two parts we split the proof into three cases. If x = 0 then |x| = x. If x > 0
then |x| = x, and 1

x > 0, hence | 1x | = 1
x = 1

|x| . If x < 0 then |x| > 0 > x, and 1
x < 0,

hence | 1x | = − 1
x = 1

−x = 1
|x| .

(ii) For this note that

|xy|2 = (xy)2 = xy × xy = x2y2 = |x|2|y|2 = (|x||y|)2

14



INEQUALITIES

where we have used the first part of (i) a number of times. But |xy| ≥ 0 and |x||y| ≥ 0,
so by Corollary 1.5 we can take (positive) square roots to get |xy| = |x||y| as required.

(iii) By (i) and (ii) we have |xy | = |x × 1
y | = |x|| 1y | = |x| × 1

|y| = |x|
|y| .

(iv) We have

|x + y|2 = (x + y)2 = x2 + 2xy + y2 ≤ x2 + 2|xy| + y2 (by (i))

= |x|2 + 2|x||y| + |y|2 (by (i) and (ii))

= (|x| + |y|)2

However, both |x+y| ≥ 0 and |x|+ |y| ≥ 0, and so we can conclude from Corollary 1.5
(by taking positive square roots) that |x + y| ≤ |x| + |y| as required.

(v) For this one note that by (iv) we get

|x| = |(x − y) + y| ≤ |x − y| + |y| ⇒ |x| − |y| ≤ |x − y|.

Similarly, by swapping the roles of x and y,

|y| − |x| ≤ |y − x| = |−(x − y)| = |x − y|

But
∣∣|x| − |y|

∣∣ is equal to |x| − |y| or −(|x| − |y|) = |y| − |x|, and so we have shown

∣∣|x| − |y|
∣∣ ≤ |x − y|

as required.

Now consider the inequality |x| < 7. To apply the definition of |x| in order to find
the solution set for this inequality we split the problem into two parts, depending on
whether x is in [0,∞) or (−∞, 0). So we have

if x ∈ [0,∞) and |x| < 7 then 0 ≤ x = |x| < 7

and if x ∈ (−∞, 0) and |x| < 7 then x < 0 and −x = |x| < 7 ⇒ −7 < x < 0.

Thus a number x ∈ R satisfies |x| < 7 if and only if −7 < x < 7, which is illustrated
on the graph below:

�������������
�
�
�

��

y

x

y = |x|

y = 7

7−7

There was clearly nothing special about the choice of the number 7 in the above
calculation. Indeed, for any positive number δ > 0 the solution set of the inequality
|x| < δ is −δ < x < δ. Furthermore, we can use this to solve the following very
important inequality:

|x − a| < δ

15
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where a ∈ R and δ > 0. Indeed, if we set y = x − a then |x − a| < δ becomes |y| < δ
which has solution set −δ < y < δ. But replacing y by x − a gives

−δ < x − a < δ ⇔ a − δ < x < a + δ.

This is shown graphically by

������������
�
�
�
�

�
�
�
�

���������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

��������������������
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����������������

y

x

δ

a + δ a + δa − δ a − δ

y = |x − a|

a a

noting that the graph for y = |x − a| is got by shifting that for y = |x| to the right
by a units. Thus we see that a number x satisfies the inequality |x − a| < δ if and
only if it is in the interval (a − δ, a + δ), with centre point a and of width 2δ. That
is, it satisfies the inequality if and only if its distance from the point a is less than δ.

One useful trick to solve inequalities involving absolute values is to recall that for
any a, b ∈ [0,∞) we have a < b if and only if a2 < b2. Moreover, |x| ≥ 0 for all x ∈ R,
and |x|2 = x2. These facts help us to remove the modulus signs, without having to
split everything into several cases.

Example 1.17. Find the solution set of the inequality

∣∣∣∣
2x + 5

x + 4

∣∣∣∣ ≥ 1 (x 6= −4) (∗)

Note that we have to exclude x = −4 in the above, since the fraction on the left
hand side is not defined for this value of x. Also, unlike before when we were dealing
with rational functions, we are now able to multiply by factors such as |x + 4|, since
this number is nonnegative by definition.

Solution. We have the following equivalences (subject to x 6= −4):

∣∣∣∣
2x + 5

x + 4

∣∣∣∣ =
|2x + 5|
|x + 4| ≥ 1 (by (iii) of Proposition 1.16)

⇔ |2x + 5| ≥ |x + 4| (mult./div by |x + 4|)
⇔ |2x + 5|2 ≥ |x + 4|2

⇔ 4x2 + 20x + 25 ≥ x2 + 8x + 16

⇔ 3x2 + 12x + 9 ≥ 0 (add/subtract −x2 − 8x − 16)

⇔ x2 + 4x + 3 ≥ 0 (mult./div. by 3)

⇔ (x + 3)(x + 1) ≥ 0

We thus see that the solution set of (∗) is (−∞,−4)∪ (−4,−3]∪ [−1,∞). [You could
produce a table at this stage, but for solving a quadratic this may be excessive.]

16
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Exercise 1.18 (A02 1(a)). Find the solution set of the inequality

|x + 4| > |3x − 8|

and mark this set on a diagram.

When applying the definition of limits in the next chapter to particular examples
it is useful to find bounds for the growth of functions. That is given a function f(x)
and some finite subinterval I ⊆ R, we would often like to find numbers M and/or N
such that

|f(x)| ≤ N or M ≤ |f(x)| ≤ N for all x ∈ I.

It turns out that for our applications we generally only need some crude choice for N ,
rather than finding the best possible bound, and consequently the triangle inequality
(part (iv) of Proposition 1.16) gives an efficient method. Indeed that says that

|x + y| ≤ |x| + |y|

for all x, y ∈ R. An induction argument applied to this gives

|x1 + x2 + · · · + xn| ≤ |x1| + |x2| + · · · + |xn|

for any n ≥ 1 and any xi ∈ R.

Exercise 1.19 (A04 3(b)). Find a positive number N > 0 such that
∣∣∣∣x

3 − 3x cos x +
4

x

∣∣∣∣ ≤ N

for all 1 ≤ x ≤ 3.

Example 1.20. Find positive numbers M and N such that M ≤
∣∣∣∣
x + 3

x − 2

∣∣∣∣ ≤ N for

all x ∈ [4, 7].

Solution. By (iii) of Proposition 1.16,
∣∣∣∣
x + 3

x − 2

∣∣∣∣ =
|x + 3|
|x − 2| =

a

d

where a = |x + 3| and d = |x − 2|.
Now 4 ≤ x ≤ 7 is equivalent to 7 ≤ x+3 ≤ 10, so for such x, |x+3| = x+3 ≤ 10.

Similarly 4 ≤ x ≤ 7 is equivalent to 2 ≤ x − 2 ≤ 5, and so |x − 2| = x − 2 ≥ 2 in this
case. Now if we set b = 10 and c = 2, then we have a ≤ b = 10 and d ≥ c = 2 and so
by (vi) of Proposition 1.1

a

d
≤ b

c
=

10

2
= 5.

That is, ∣∣∣∣
x + 3

x − 2

∣∣∣∣ ≤ 5

for all x ∈ [4, 7]. Hence N = 5 will do.

Exercise 1.21. Show that we can take M = 7
5 .

Exercise 1.22. Show that M must be no bigger than 2.

17



2 Limits and Continuity

The intuitive idea of limits

Our aim in this course is to give a rigorous introduction to the basic ideas of calculus,
a branch of mathematics that has come to dominate the physical sciences. The main
underlying concept in calculus is that of the limit — the behaviour of a function as
the point at which you evaluate it gets closer and closer to some prescribed value.
Such ideas were finally developed with sufficient rigour in the 19th Century, long
after calculus had been invented in the 17th Century by Leibniz and Newton. Back

then statements such as f(x) → f(u) or lim
δx→0

δy

δx
were written down and dealt with

intuitively, but not fully explained. Indeed, the lack of clear definition or explanation
often lead the practitioners to draw incorrect conclusions! Here the number δx is
used to denote a small change in the variable x, and in the limit people talked of
infinitesimal numbers, which were sometimes assumed to be zero and sometimes not,
according to what was convenient at that stage in a calculation for the particular
author. . .

The goal of this section is give a precise definition of limit on which we can
build the appropriate definition of the derivative of a function. We shall consider
the limiting behaviour of functions f : R → R, and begin by recalling the following
important result from the previous chapter: for any a ∈ R and δ > 0, the inequality
|x − a| < δ is equivalent to the double inequality a − δ < x < a + δ, i.e. x lies in the
interval (a − δ, a + δ):

��������������������������

�
�
�
�

x

a + δa − δ a

Thus if f : R → R is a function and ε > 0 a given number, the statement that
|f(x)− l| < ε is equivalent to l − ε < f(x) < l + ε, that is, f(x) ∈ (l − ε, l + ε). Note
that a is the midpoint of the interval (a−δ, a+δ) and l is the midpoint of the interval
(l − ε, l + ε).

Example 2.1. Consider the function f : R → R defined by f(x) = x2.

2

4

y

y = x2

x
x1 x2

y1

y2

4 + ε

4 − ε

2 + δ2 − δ

18
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Consider the point x = 2, mapped by the function f to 22 = 4. Choose a small
positive number ε > 0, which should be thought of as the acceptable degree of error,
and consider the interval (4−ε, 4+ε) about 4, i.e. the set of all y such that |y−4| < ε.

Now put x1 =
√

4 − ε and x2 =
√

4 + ε. Recall that f(x) = x2 is strictly increas-
ing on [0,∞) by Proposition 1.4, hence x1 < 2 < x2. Furthermore

x1 < x < x2 ⇒ x2
1 = 4 − ε < x2 = f(x) < 4 + ε = x2

2 ⇒ |f(x) − 4| < ε. (†)

Since x1 < 2 < x2, if we define δ = 1
2 min{2 − x1, x2 − 2} then in particular δ > 0.

Also, if |x − 2| < δ then 2 − δ < x < 2 + δ. But

δ ≤ 1
2 (2 − x1) ⇒ 2 − δ ≥ 2 − 1

2(2 − x1) > 2 − (2 − x1) = x1, and

δ ≤ 1
2 (x2 − 2) ⇒ 2 + δ ≤ 2 + 1

2(x2 − 2) < 2 + (x2 − 2) = x2.

Thus if |x − 2| < δ then x1 < x < x2, and so 4 − ε < x2 < 4 + ε by (†). That is

0 < |x − 2| < δ ⇒ |f(x) − 4| < ε.

To give an example of possible values that ε and δ might take, consider setting
ε = 0.1. Then x1 =

√
3.9 ≈ 1.975, and x2 =

√
4.1 ≈ 2.025, and so 2 −

√
3.9 ≈ 0.025

and
√

4.1 − 2 ≈ 0.025. Thus if we set δ = 0.012 ≈ 1
2 × 0.025, then 2 − δ = 1.988 and

2 + δ = 2.012. So now if we choose any x satisfying 0 < |2 − x| < 0.012, we will have
|f(x) − 4| < 0.1.

Similarly if we take ε = 0.01 then x1 =
√

3.99 ≈ 1.9975 and x2 =
√

4.01 ≈ 2.0025.
Thus if we set δ = 0.0012 ≈ 1

2 × 0.0025 then 2 − δ = 1.9988 and 2 + δ = 2.0012, and
if we choose any x satisfying 0 < |2 − x| < 0.0012, we will have |f(x) − 4| < 0.01.

The important point about our calculations with ε and δ above is that no matter

how small a value of ε we choose there is always some δ > 0 for which

0 < |x − 2| < δ ⇒ |f(x) − 4| < ε.

For instance it will work for ε = 0.001, 0.0000001, . . . As the value of ε gets smaller
and smaller, we will need to choose smaller and smaller values of δ, forcing x to be
closer and closer to 2, but it is always possible to find this δ. And by choosing smaller
and smaller ε we are ensuring that f(x) is as close as we like to 4.

Anticipating the definition below, we write the conclusion of the above as

lim
x→2

f(x) = 2, or f(x) → 4 as x → 2.

It is true that 4 = 22 = f(2), but that is not actually relevant to the above
discussion. Indeed above we wrote the double inequality 0 < |x − 2| < δ, which
implies in particular that x 6= 2, i.e. x does not actually take the value 2, but merely
approaches it. So if we were to define a new function g : R → R by

g(x) =

{
x2 if x 6= 2,

2 if x = 2,

then the same calculations would apply, and we could conclude that lim
x→2

g(x) = 4,

even though g(2) = 2 6= 4.
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2

(2, 2)

4

y

y = g(x)

x

The definition of a limit; basic techniques

Definition 2.2. Let f : R → R be a function and let a, l ∈ R be real numbers. Then
l is called the limit of f as x tends to a if given any ε > 0 there is some δ > 0 such
that whenever 0 < |x− a| < δ we have |f(x)− l| < ε. If this is the case then we write
lim
x→a

f(x) = l, or f(x) → l as x → a.

Note.

(i) We do not require that f(a) = l — indeed we do not actually require that f(a)
be defined.

(ii) The number δ depends on ε, and is often written as δ(ε) to indicate this fact.
As ε decreases in size, δ typically does so as well.

Moreover, suppose for a given ε > 0 we have found some δ > 0 such that

0 < |x − a| < δ ⇒ |f(x) − l| < ε.

Then for all other numbers δ0 satisfying 0 < δ0 < δ we have

0 < |x − a| < δ0 ⇒ 0 < |x − a| < δ ⇒ |f(x) − l| < ε.

a + δa − δ a + δ0a − δ0
a

(iii) If the limit exists it is unique — but it need not exist.

In the definition of the limit above we use inequalities of the form 0 < |x−a| < δ,
which says that distance between x and a is less than δ, but does not specify whether
x should be less than or greater than a. We can give definitions of limits in which x
is restricted so that it approaches a from the right or the left.

Definition 2.3. Let f : R → R be a function and let a, l ∈ R be real numbers.
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LIMITS AND CONTINUITY

(i) l is called the left limit of f as x tends to a if given any ε > 0 there is some

δ > 0 such that whenever 0 < a− x < δ we have |f(x)− l| < ε. This is written
lim

x→a−
f(x) = l, or f(x) → l as x → a−.

(ii) l is called the right limit of f as x tends to a if given any ε > 0 there is some

δ > 0 such that whenever 0 < x− a < δ we have |f(x)− l| < ε. This is written
lim

x→a+
f(x) = l, or f(x) → l as x → a+.

Note that for the left limit to exist we must have 0 < a−x < δ, which is equivalent
to saying that a − δ < x < a, that is x is less than a, and so must “approach from
the left”. Similarly, for the right limit to exist we must have a < x < a + δ, and so x
“approaches from the right.”

Proposition 2.4. Let f be a function R → R and a ∈ R. Then lim
x→a

f(x) exists if

and only if lim
x→a−

f(x) and lim
x→a+

f(x) both exist and are equal.

Example 2.5. Define f : R → R by

f(x) =

{
2 if x ≥ 0,

1 if x < 0.

This has graph

y

x

1

2

and so pictorially we see that lim
x→0+

f(x) = 2 and lim
x→0−

f(x) = 1. Thus the left and

right limits exist, but they are unequal. Hence lim
x→0

f(x) does not exist.

Example 2.6. Let c and d be any two real numbers. Using the definition of limits
show that if f(x) = c+dx for all x ∈ R then for each a ∈ R we have lim

x→a
f(x) = c+da.

Solution. For each x ∈ R and the specified point a ∈ R we have

|f(x) − (c + da)| = |c + dx − c − da| = |d(x − a)| = |d||x − a|. (∗)

Case 1. d = 0: In this case, if we choose any positive number ε > 0 then by (∗)

|f(x) − c| = |0||x − a| = 0 < ε

for every x ∈ R. Thus if we choose any positive number δ > 0 then

0 < |x − a| < δ ⇒ |f(x) − c| < ε,
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and so lim
x→a

f(x) = c as required.

Case 2. d 6= 0: Again choose some ε > 0, and now set δ = ε
|d| > 0. Then by (∗)

0 < |x − a| < δ ⇒ |f(x) − (c + da)| < |d|δ = |d| × ε

|d| = ε,

and so lim
x→a

f(x) = c + da as required.

Example 2.7. Using the ε-δ definition of a limit, show that lim
x→2

(x2 + 5x − 7) = 7.

Solution. For convenience, define f to be the function f(x) = x2 + 5x− 7 and choose
an ε > 0. We must find some δ > 0 such that if 0 < |x − 2| < δ, then |f(x) − 7| < ε.
Now

|f(x) − 7| = |(x2 + 5x − 7) − 7| = |x2 + 5x − 14| = |(x + 7)(x − 2)| = |x + 7||x − 2|

and so if we choose any δ > 0, then whenever 0 < |x − 2| < δ we will have

|f(x) − 7| ≤ δ|x + 7|

But what is |x + 7| less than? Well we are only really interested in values of x close
to 2, so we can always make an initial restriction on δ, say by requiring that it is
less than 1. So then if |x − 2| < δ with such a δ, then we have restricted x to lie
in (2 − δ, 2 + δ), and this interval is itself contained in (2 − 1, 2 + 1) = (1, 3) by the
assumption on δ. But if x ∈ (1, 3) then 8 = 1+7 < x+7 < 3+7 = 10. So restricting
δ to be less than 1 tells us that if |x− 2| < δ then we must have |x + 7| = x + 7 < 10.

So now choose δ = min{1
2 , ε

10}. Then 0 < δ < 1 (which is why we used 1
2 in its

definition), and whenever 0 < |x − 2| < δ we have, since δ ≤ ε
10 ,

|f(x) − 7| ≤ δ|x + 7| ≤ ε

10
|x + 7| <

ε

10
× 10 = ε.

Thus we have that lim
x→2

(x2 + 5x − 7) = 7.

The above result is not overly easy to prove, certainly not as easy as it was to prove
the limits in Example 2.6. However that earlier example, together with the following
proposition, give a much faster route to proving the above result. The proofs given
illustrate the need for, and an application of, the rigorous definition of limits.

Proposition 2.8 (Calculus of Limits). Suppose that f and g are two functions

R → R, and that for some a ∈ R we have

lim
x→a

f(x) = p, and lim
x→a

g(x) = q

for some p, q ∈ R. Then

(i) lim
x→a

(
f(x) + g(x)

)
= p + q.

(ii) lim
x→a

(
f(x)g(x)

)
= pq.
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LIMITS AND CONTINUITY

(iii) If q 6= 0, then lim
x→a

f(x)

g(x)
=

p

q
.

(iv) If n is any positive integer and p > 0 then lim
x→a

n

√
f(x) = n

√
p.

Proof. (i) Fix an ε > 0, then ε
2 > 0 as well. Since lim

x→a
f(x) = p and lim

x→a
g(x) = q

there are positive numbers δf > 0 and δg > 0 such that

0 < |x − a| < δf ⇒ |f(x) − p| <
ε

2
, and

0 < |x − a| < δg ⇒ |g(x) − q| <
ε

2
.

Now if we define δ = min{δf , δg} then δ > 0. Moreover if 0 < |x − a| < δ then
0 < |x − a| < δf and 0 < |x − a| < δg, and so by the inequalities above we have

|(f(x) + g(x)) − (p + q)| = |(f(x) − p) + (g(x) − q)|
≤ |f(x) − p| + |g(x) − q| <

ε

2
+

ε

2
= ε.

(iii) Fix an ε > 0, and assume that p 6= 0. Set

εf =
ε|q|
4

> 0, and εg = min

{
ε|q|2
4|p| ,

|q|
2

}
> 0.

By hypothesis there are positive numbers δf > 0 and δg > 0 such that

0 < |x − a| < δf ⇒ |f(x) − p| < εf , and

0 < |x − a| < δg ⇒ |g(x) − q| < εg.
(†)

By the reverse triangle inequality (part (v) of Proposition 1.16) we have

|g(x)| =
∣∣q −

(
q − g(x)

)∣∣ ≥ |q| − |q − g(x)|

and so if 0 < |x − a| < δg then |g(x) − q| < εg ≤ 1
2 |q|, and hence

|g(x)| ≥ |q| − 1
2 |q| = 1

2 |q| > 0. (‡)

Define δ = min{δf , δg}, so in particular δ > 0. Now

f(x)

g(x)
− p

q
=

q
(
f(x) − p

)
− p

(
g(x) − q

)

qg(x)
.

Thus if 0 < |x − a| < δ, then the inequalities (†) and (‡) both hold and so

∣∣q
(
f(x) − p

)
− p

(
g(x) − q

)∣∣ ≤ |q||f(x) − p| + |p||g(x) − q|
< |q|εf + |p|εg

≤ |q| × ε|q|
4

+ |p| × ε|q|2
4|p| =

ε|q|2
2

and
|qg(x)| = |q||g(x)| ≥ 1

2 |q|
2.
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The definition of a limit; basic techniques

So, finally, by part (vi) of Proposition 1.1 we have

0 < |x − a| < δ ⇒
∣∣∣∣
f(x)

g(x)
− p

q

∣∣∣∣ <
1
2ε|q|2
1
2 |q|2

= ε

as required.
If p = 0 then setting εf = 1

2ε|q| and εg = 1
2 |q| at the outset of the proof, and

following the same steps, will yield the desired result.

Example 2.9. Show that lim
x→a

x2 = a2 for any real number a ∈ R.

Solution. To show this, let g : R → R be the function g(x) = x, then lim
x→a

g(x) = a as

shown in Example 2.6 (taking c = 0, d = 1). Now note that f(x) = x2 = g(x)g(x),
so by part (ii) of Proposition 2.8 we have

lim
x→a

f(x) = lim
x→a

(
g(x)g(x)

)
=

(
lim
x→a

g(x)
)(

lim
x→a

g(x)
)

= a × a = a2.

Exercise 2.10 (A02 1(b)). Use the calculus of limits to evaluate the following:

lim
x→0

x3 + x2 − 5x + 3

x2 + x − 2
, lim

x→1

x3 + x2 − 5x + 3

x2 + x − 2

Example 2.11. Find the limit lim
x→−1

√
2 + x − 1

x + 1
.

Solution. A direct use of the calculus of limits to top and bottom gives the meaningless
answer 0

0 , as would happen in the exercise above. So note that

√
2 + x − 1

x + 1
=

√
2 + x − 1

x + 1
×

√
2 + x + 1√
2 + x + 1

(x 6= −1)

=
(2 + x) − 1

(x + 1)(
√

2 + x + 1)
=

x + 1

(x + 1)(
√

2 + x + 1)

=
1√

2 + x + 1
.

So now by Proposition 2.8(iii) and (iv) (with n = 2) we have

lim
x→−1

√
2 + x − 1

x + 1
=

1

lim
x→−1

(
√

2 + x + 1)
=

1

2
.

Exercise 2.12 (A04 1(b ii)). Use the calculus of limits to evaluate the following:

lim
x→2

√
2x − 3 −

√
x − 1

x − 2

In Examples 2.10, 2.11 and 2.12 above we made use of the following fact:

Proposition 2.13. Suppose that f and g are functions for which f(x) = g(x) for all

x 6= a. If lim
x→a

f(x) exists then so does lim
x→a

g(x), and moreover lim
x→a

f(x) = lim
x→a

g(x).
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LIMITS AND CONTINUITY

Example 2.14. lim
x→0

sin x

x
= 1 and lim

x→0

cos x − 1

x
= 0.

These limits involving trigonometric functions are important for the calculation
of the derivatives of sin x and cos x, and can be proved geometrically by considering
a circle of radius 1, and the sector cut off by an angle of x radians:

x

A

BCDO

OA and OC are both of length 1, so the perpendicular height OD of triangle △OAC
is sinx, and thus its area is 1

2 × 1 × sinx = 1
2 sinx. Similarly AB has length tan x,

since OÂB is a right-angle, and thus △OAB has area 1
2 tan x. Between these two

triangles is the sector OAC, whose area is x
2π × π × 12 = 1

2x, and so we have

area of △OAC < area of sector OAC < area of △OAB

⇒ 1
2 sin x < 1

2x < 1
2 tan x =

sin x

2 cos x

⇒ 1 <
x

sin x
<

1

cos x
.

But from the graph of cosx we know that cos x → 1 as x → 0, so 1
cos x → 1 as x → 0

by the calculus of limits. This forces x
sinx → 1 as x → 0, and so sinx

x → 1 as x → 0 as
stated.

For the other limit we have

cos x − 1

x
=

cos x − 1

x
× cos x + 1

cos x + 1
=

cos2 x − 1

x(cos x + 1)

=
− sin2 x

x(cos x + 1)
= −sin x

x
× sin x

cos x + 1

We know already that lim
x→0

sin x

x
= 1. Moreover lim

x→0
sin x = 0 and lim

x→0
(cos x + 1) =

1 + 1 = 2, so that

lim
x→0

sinx

cos x + 1
=

0

2
= 0 ⇒ lim

x→0

cos x − 1

x
= −1 × 0 = 0.

So far all but one of our functions have had limits at the given point(s), and
the badly behaved one in Example 2.5 at least had (differing) left and right limits.
However there are functions whose behaviour is far worse.
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The definition of a limit; basic techniques

Example 2.15. lim
x→0

1

x
does not exist.

To see this consider the graph of 1
x :

y

x

M

−M

1

M

− 1

M

y = 1

x

As x approaches 0 from the right 1
x becomes very large and positive, and as x

approaches 0 from the left 1
x becomes very large and negative. More formally, if we

choose any M > 0 then

0 < x <
1

M
⇒ 1

x
> M and − 1

M
< x < 0 ⇒ 1

x
< −M

That is 1
x becomes greater (or less) than any bound M (−M) we choose for all values

of x sufficiently close to 0.

We say that lim
x→0

1

x
does not exist because the function diverges or blows up at

the origin. Other functions fail to have limits despite not blowing up at the point of
interest:

Example 2.16. lim
x→0

f(x) does not exist for f : R → R defined by

f(x) =

{
1 if x = 1

n for some n ≥ 1,

0 otherwise.

To see this note that for any choice of δ > 0 there are values of x satisfying 0 < x < δ
for which f(x) = 1 (take any x = 1

n for n > 1
δ ) and values of x for which f(x) = 0.

Thus f(x) cannot approach a single value as x → 0+.
Note however that f(x) = 0 for all x < 0, and so lim

x→0−
f(x) = 0.

1

11

2

1

3

1

4

y

x
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LIMITS AND CONTINUITY

Coping with infinity

Consider the function f(x) = 1
x2 . We can obtain a sketch the graph of this function

by looking at the graph for x 7→ x2:

yy

y = x2 y = 1

x2

x

x

The function blows up at x = 0 but unlike 1
x it goes to +∞ as x converges to

0 from either side. Moreover, note that as x gets very large, in either direction,
the value of 1

x2 is always positive but gets closer and closer to 0. The notation and
definitions for these sorts of behaviour are as follows:

Definition 2.17. Let f be a function on R and a ∈ R. Then f diverges to infinity

as x tends to a if for every M > 0 there is some δ > 0 such that

0 < |x − a| < δ ⇒ f(x) > M.

This is written f(x) → +∞ as x → a.
Similarly, f diverges to minus infinity as x tends to a if for every M > 0 there

is some δ > 0 such that

0 < |x − a| < δ ⇒ f(x) < −M,

and this is written f(x) → −∞ as x → a.

We can adjust the definition accordingly to take care to left and right limits, and
when we do this can give meaning to the statements 1

x → +∞ as x → 0+, and
1
x → −∞ as x → 0−. Indeed, this was proved in Example 2.15.

For the limit of a function as the variable x gets large, the appropriate definitions
are as follows:

Definition 2.18. Let f be a function on R and let l1, l2 ∈ R. Then f converges to

l1 as x tends to +∞ if for every ε > 0 there is some M1 > 0 such that

x > M1 ⇒ |f(x) − l1| < ε.

This is written f(x) → l1 as x → +∞.
Similarly f converges to l2 as x tends to −∞ if for every ε > 0 there is some

M2 > 0 such that
x < −M2 ⇒ |f(x) − l2| < ε,

which is written f(x) → l2 as x → −∞.
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Coping with infinity

y

xM1

l1

l1 + ε

l1 − ε

If we combine elements of the two definitions we can then give a rigorous meaning
to statements such as “f(x) → +∞ as x → +∞”.

Example 2.19.

(a) For each n ≥ 1 let fn(x) = xn for each x ∈ R. Then (recalling Proposition 1.4)

fn(x) → +∞ as x → +∞
fn(x) → −∞ as x → −∞ if n is odd

fn(x) → +∞ as x → −∞ if n is even

That this is the case follows since fn(x) ≥ x for all x ≥ 1, and if x > 0 then

(−x)n = (−1)nxn =

{
xn if n is even,

−xn if n odd.

(b) Let

f(x) =
x − 3

x2 + 3x + 2
.

Now x2 + 3x + 2 → (−1)2 + 3 × (−1) + 2 = 0 as x → −1 by the calculus of
limits, and x− 3 → (−1)− 3 = −4 6= 0. Moreover x2 + 3x + 2 = (x + 1)(x + 2),
so

− 1 < x < 3 ⇒ x2 + 3x + 2 > 0 and x − 3 < 0 ⇒ f(x) < 0, and

− 2 < x < −1 ⇒ x2 + 3x + 2 < 0 and x − 3 < 0 ⇒ f(x) > 0.

It follows that

f(x) → +∞ as x → −1−, and f(x) → −∞ as x → −1 + .

For the behaviour as x → ±∞, divide top and bottom by x2. This gives

f(x) =
x − 3

x2 + 3x + 2
=

1
x − 3

x2

1 + 3
x + 2

x2

→ 0

1
= 0

as x → +∞ and as x → −∞, since 1
xn

→ 0 as x → ±∞ for each n ≥ 1.

Exercise 2.20. Carry out a similar analysis as done for f in part (b) of Example 2.19

above for the functions g(x) =
x5 − 4x2 + 2

5 + 2x4 − 7x5
and h(x) =

x2 − x + 1

x − 2
.
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LIMITS AND CONTINUITY

Continuous functions

The intuitive idea of a continuous function is one whose graph has ‘no jumps’, or ‘can
be drawn without taking the pen off of the paper.’ Consequently it should have a
limit at each point a, that is f(x) should converge to some value as x tends to a, and
furthermore that value should be equal to the value of the function at that point.
This idea is captured by the following:

Definition 2.21. Let f : R → R be a function and let a ∈ R. We say that f is

continuous at the point a if

(i) lim
x→a

f(x) exists, and

(ii) lim
x→a

f(x) = f(a).

f is continuous on R if it is continuous at every point a ∈ R.
A function that is not continuous at a point a is called discontinuous. Intuitively

speaking it has a break in the graph at this point.

If we rewrite this using the definition of limits, we see that a function f : R → R

is continuous at a point a if for every choice of ε > 0 there is some δ > 0 such that

0 < |x − a| < δ ⇒ |f(x) − f(a)| < ε.

Now we must insist that f is defined at the point x = a unlike when we were con-
sidering limits earlier, and since |f(x) − f(a)| = 0 when x = a, we can remove the
inequality 0 < |x − a| from the definition. Thus the function is continuous at a if for
every ε > 0 there is some δ > 0 such that

|x − a| < δ ⇒ |f(x) − f(a)| < ε.

Example 2.22. For every choice of c, d ∈ R we know that the function f(x) = c+dx
is continuous since by Example 2.6 we have that lim

x→a
f(x) = c + da = f(a).

Again, this one result in conjunction with the calculus of limits can be used to
give many more examples of continuous functions.

Proposition 2.23. If f(x) and g(x) are functions R → R that are continuous at

x = a, then so are the functions f(x)+ g(x) and f(x)g(x). Moreover if g(a) 6= 0 then

the function
f(x)
g(x) is continuous at x = a, as is the function n

√
f(x) for each n ≥ 2 if

f(a) > 0.

Proof. These are all immediate consequences of the calculus of limits, as given in
Proposition 2.8. For instance, consider the function fg which maps the point x to
f(x)g(x). Since f and g are continuous at a, f and g have limits there, and moreover

lim
x→a

f(x) = f(a), lim
x→a

g(x) = g(a).

Thus, by Proposition 2.8, lim
x→a

(
f(x)g(x)

)
exists, and is equal to the product of the

above limits, hence equals f(a)g(a) = (fg)(a) as required.
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Continuous functions

Since any polynomial can be written as a sum of products of the functions con-
sidered in Example 2.22, the above result leads immediately to the following:

Corollary 2.24. Every polynomial is continuous on R. Every rational function is

continuous wherever it is defined.

Definition 2.25. Let f and g be functions from R to R. Their composition is the
function g ◦ f : R → R is defined by

(g ◦ f)(x) = g
(
f(x)

)
.

That is, apply f to the point x and then apply g to the result.

Example 2.26. Consider the functions f : R → R and g : R → R given by f(x) =
x2 + 3 and g(x) = 1 − x. Calculate f ◦ g(x) and g ◦ f(x).

Note in particular that f ◦ g and g ◦ f are different functions in this example; this
is usually the case for compositions.

Proposition 2.27. Let f and g be functions R → R with f continuous at some point

a, and g continuous at the image point f(a). Then g ◦ f is continuous at a.

Proof. For each ε > 0 we must show that there is a δ > 0 such that

|x − a| < δ ⇒ |(g ◦ f)(x) − (g ◦ f)(a)| < ε.

So fix an ε > 0, then since g is continuous at the point f(a), there is some δg > 0
such that

|t − f(a)| < δg ⇒ |g(t) − g(f(a))| < ε. (∗)

But in turn we know that f is continuous at a, so given this positive number δg > 0
we know that there is some δ > 0 such that

|x − a| < δ ⇒ |f(x) − f(a)| < δg. (†)

So if we take any x ∈ R that satisfies |x − a| < δ then |f(x)− f(a)| < δg by (†). But
this means that we can apply (∗) with t = f(x) to get

|x − a| < δ ⇒ |f(x) − f(a)| < δg ⇒ |g(f(x)) − g(f(a))| < ε,

which is precisely what we needed to show.

So far we have only considered continuous functions that have been defined at
every point of R. This may not always be the case, as in the following examples.

Example 2.28. Define a function f on R by

f(x) =
x2 − 9

x − 3
, x 6= 3.

Since x2 −9 = (x−3)(x+3) we have that f(x) = x+3 for all x 6= 3, and so for a 6= 3
we have lim

x→a
f(x) = a + 3 = f(a), hence f is continuous at every a 6= 3.
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LIMITS AND CONTINUITY

Moreover by Proposition 2.13 and Example 2.6 lim
x→3

f(x) = 6. So if we were

to extend the domain of definition of f by setting f(3) = 6 then we will obtain a
continuous function.

On the other hand if we define f to be any other value at x = 3 then it would still
be true that f(x) → 6 as x → 3, but the redefined function will not be continuous in
this case since we will have f(3) 6= 6.

Example 2.29. The function f(x) = 1
x is discontinuous at x = 0 since we have

shown that lim
x→0

f(x) does not exist.

Similarly consider the function g defined on all of R by

g(x) =






1

(x − 2)2
if x 6= 2,

5 if x = 2.

As x tends to 2 we see that (x−2)2 converges to 0 and is positive, and so f(x) diverges
to +∞. Hence lim

x→2
f(x) cannot exist, and so f is not continuous at 2, despite the

fact that it is defined. Moreover, any change in the definition of f at x = 2 will not
alter this fact.

2

5

y
y = g(x)

x

The behaviour in Example 2.28 is different from that in Example 2.29. In the
case of Example 2.28 the point x = 3 is known as a removable discontinuity since
the function does have a limit there, and so redefining the function will produce a
continuous function. In the case of Example 2.29 the points of discontinuity of f and
g are essential discontinuities since they do not have limits, and so no matter how
we define the functions at these points, they will never be continuous there.

Another example of a removable discontinuity is the following:

Example 2.30. Let f be the function R → R defined by

f(x) =

{
1 if x 6= 1,

2 if x = 1.

Then lim
x→1

f(x) = 1 6= f(1), and so f is not continuous at x = 1. If we redefine f to
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Continuity on intervals

be 1 at x = 1 then we will remove the singularity.

y

x

1

2

2

Exercise 2.31 (S03 2(b)). Consider the following function on the real line R:

f(x) =
x2 − 5x − 14

2x2 + 3x − 2

At which point(s) is f continuous? At which point(s) is f undefined?
Determine whether the point(s) at which f is undefined are essential or removable

singularities.
Describe the behaviour of f(x) as x → +∞

Continuity on intervals

Often a function may be defined only on some interval I of the real line and in this
case we must make some changes to our definition of continuity. If a ∈ I is not an
endpoint then x can approach a from either side and so it still makes sense to ask if
f(a) = lim

x→a
f(x). If a ∈ I is an endpoint then x can only approach this value from one

side and still be in I, and so we must use one sided limits in our modified definition
of continuity.

Thus if I = [c, d] for some c < d, then a function f : I → R is continuous on I if
it is continuous at each point of I, which means that at a point a ∈ I

lim
x→a

f(x) exists and is equal to f(a) if c < a < d,

lim
x→a+

f(x) exists and is equal to f(a) if a = c, and

lim
x→a−

f(x) exists and is equal to f(a) if a = d.

Again, this just means that the graph has no breaks over [c, d].

y

xc d

leftright
limit limit

here here
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LIMITS AND CONTINUITY

A moments thought shows that if we start with a function that is continuous on
all of R and restrict it so that we only consider values of x from some subinterval
I then that function will also be continuous. This idea provides a ready supply of
continuous functions on subintervals of R to which we can apply the following result.

Theorem 2.32 (Intermediate Value Theorem). Let c, d ∈ R with c < d, and let

f : [c, d] → R be continuous. Then there are points x1, x2 ∈ [c, d] such that

f(x2) ≤ f(x) ≤ f(x1) for all x ∈ [c, d].

Moreover f takes all values between f(x2) and f(x1). That is, if y ∈ R satisfies

f(x2) ≤ y ≤ f(x1) then there is some x ∈ [c, d] such that f(x) = y.

The number f(x1) is called the maximum of f on [c, d] and the number f(x1) is
called the minimum of f on [c, d]. The result is intuitively obvious, but not so easy
to prove. It depends on the completeness of the real number system.

y

xc dx1

x2

f(x1)

f(x2)

Thus we see that any continuous function on an interval of the form [c, d] is
bounded, that is the values f(x) that the function takes for x ∈ [c, d] lie between two
numbers. Conversely if we have an unbounded function g on [c, d], it follows that it
cannot be continuous on [c, d].

Also, the Intermediate Value Theorem is not valid if we replace the interval [c, d]
with any of the other three intervals having c and d as end points. For example
the function f(x) = 1

x is well-defined and continuous on the open interval (0, 1) by
Theorem 2.23. However f(x) → +∞ as x → 0+: there is no number M such that
f(x) ≤ M for all x ∈ (0, 1). Also f(x) > 1 for all x ∈ (0, 1) and lim

x→1
f(x) = 1, so that

f(x) gets as close to 1 as we like. But there is no point x ∈ (0, 1) for which f(x) = 1.

One thing that the Intermediate Value Theorem can tell us is if there is a solution
to a given equation in a given interval. For instance consider the polynomial f(x) =
x5 − 2x2 + 4x − 2. Then f is continuous on the interval [0, 1], since it is continuous
on all of R. Moreover f(0) = −2 and f(1) = 1. Thus there must be some x0 ∈ (0, 1)
such that f(x0) = 0 since f(x) assumes all values between −2 and 1, and so there is a
solution to x5−2x2 +4x−2 = 0 in this interval. Unlike the case of quadratics, cubics
and quartics, there is no formula for finding the roots of quintics (and polynomials of
higher degree), and so reasoning like the above gives a first step to locating them.

This use of the Intermediate Value Theorem also has a similar, but more theoret-
ical application.
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Continuity on intervals

Proposition 2.33. Let n ≥ 1 be an integer and a ≥ 0 any real number. There exists

a unique real number b ≥ 0 that satisfies bn = a; that is, there is a unique positive

nth root of a.

Proof. Recall from Proposition 1.4 that the function f : [0,∞) → R given by f(x) =
xn is strictly increasing, and is a polynomial hence continuous. Moreover we know
that f(x) → +∞ as x → ∞ (cf. part (a) of Example 2.19). In particular there must
be some c > 0 such that f(c) = cn > a. Thus, by the Intermediate Value Theorem,
f restricted to the interval [0, c] must take all values between f(0) = 0 and f(c) > a,
and so there must be some b ≥ 0 that satisfies f(b) = bn = a. That is, there is an

nth root. That it is unique follows from the fact that f is strictly increasing, since if
d ≥ 0 such that d 6= b then either d < b or d > b, and in either case f(d) 6= f(b).
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DIFFERENTIATION

3 Differentiation

The idea and definition of derivatives

Consider a distance-time graph for some object (car, bicycle, atom,. . . ) moving in a
‘continuous manner’ through ‘one-dimensional space’. We plot the displacement from
the starting point as a function of time, starting at t = 0.

d

t

d = f(t)

t1 t2

t2 − t1

f(t2) − f(t1)

t′
2

A1

A2

A′
2

Thus the function d = f(t) is continuous. The average velocity V (t1, t2) of our body
as t varies from time t1 to time t2 is given by

V (t1, t2) =
f(t2) − f(t1)

t2 − t1
= slope of the line segment A1A2.

If we set h = t2 − t1, so that t2 = t1 + h, this can be rewritten as

V (t1, t2) =
f(t1 + h) − f(t1)

h
.

Here h is the ‘change in time’. We could also take the second time to be t′2, an earlier
time than t1. That is t′2 < t1, which is equivalent to saying that h = t′2 − t1 < 0. But
in either case as we take smaller and smaller values of h (i.e. as h tends to 0), we hope
that this number will converge to a limit that we can call the actual or instantaneous

velocity at time t = t1.

We are trying to approximate the possibly complicated curve d = f(t) by a
straight line at each point, that is, find the slope of the straight line that just touches
the curve d = f(t) at the point (t1, f(t1)). Thus this straight line should meet the
curve at this point and go in the same direction — it is the tangent to the curve.

Definition 3.1. A function f : R → R is differentiable at a ∈ R if

lim
h→0

f(a + h) − f(a)

h
exists.

The value of this limit is the derivative of f at a and is denoted f ′(a). The function
f is differentiable on R if it is differentiable at every a ∈ R. If this is the case, then
f ′ : a 7→ f ′(a) is a new function R → R.
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The idea and definition of derivatives

Remarks. (i) Some authors will write

f ′(a) = lim
∆a→0

f(a + ∆a) − f(a)

∆a
(when it exists)

where ∆a stands for the change in the variable a
Also, often people use notation of the form y = f(x) for a function, in which case

if y (or f) is differentiable everywhere then the function f ′ is denoted
dy

dx
(ii) When defining the derivative we choose a function f and a point a, and from

these construct a new function g in the variable h by

g(h) =
f(a + h) − f(a)

h

for all h 6= 0. Note that g depends on the variable h. We then ask if lim
h→0

g(h) exists.

The derivative cannot be calculated by substituting h = 0 or ∆a = 0 directly into
these formulae. It is for this reason that our definition of a limit of a function g(x)
as x tends to some number b did not actually depend on g(b), and indeed did not
require that this even be defined.

Since we hope to use the derivative to find straight line approximations to more
complicated curves, we ought to check that it behaves correctly if we consider a
straight line.

Proposition 3.2. Let c, d ∈ R and define f : R → R by f(x) = c + dx. Then f is

differentiable on R with f ′ : R → R given by f ′(x) = d for all x ∈ R. That is, the

derivative at each point is equal to the gradient of this straight line.

Proof. Choose an x ∈ R, then for any h 6= 0

f(x + h) − f(x)

h
=

[c + d(x + h)] − [c + dx]

h

=
dh

h
= d

and so clearly

lim
h→0

f(x + h) − f(x)

h
= d.

Thus the limit exists for all x ∈ R (and is independent of x), with f ′(x) = d.

In particular we see that if f is a constant function, i.e. d = 0, then its derivative
f ′(x) is zero everywhere.

Example 3.3. Define f : R → R by f(x) = x2 +5x+2. Show that f is differentiable
on R and find f ′.

Solution. For each x ∈ R and h 6= 0

f(x + h) − f(x)

h
=

[(x + h)2 + 5(x + h) + 2] − [x2 + 5x + 2]

h

=
x2 + 2xh + h2 + 5x + 5h + 2 − x2 − 5x − 2

h

=
(2x + 5)h + h2

h
= 2x + 5 + h
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and so

lim
h→0

f(x + h) − f(x)

h
= lim

h→0
(2x + 5 + h) = 2x + 5

by applying Example 2.6 (with c = 2x + 5 and d = 1) to this function in the variable
h. Hence f is differentiable with f ′(x) = 2x + 5.

More generally using this method one can show that for any a, b, c ∈ R that
f(x) = ax2 + bx + c is differentiable with f ′(x) = 2ax + b.

However, we might ask which functions in general are differentiable, and the next
result shows that we can restrict our search somewhat.

Proposition 3.4. Let f : R → R be a function and let a ∈ R. Suppose that f is

differentiable at a, then f is continuous at a.

Proof. Since f is assumed to be differentiable at a we are assuming that

f ′(a) = lim
h→0

f(a + h) − f(a)

h
exists.

So in particular f(a) must be defined. For any h 6= 0

f(a + h) − f(a) = h × f(a + h) − f(a)

h

and thus, by the calculus of limits,

lim
h→0

(f(a + h) − f(a)) =
(
lim
h→0

h
)(

lim
h→0

f(a + h) − f(a)

h

)

= 0 × f ′(a) = 0.

Thus, by the calculus of limits once more, lim
h→0

f(a + h) = f(a), which is equivalent

to saying that lim
x→a

f(x) = f(a) (why?), so that f is continuous at a as required.

Taking the contrapositive of this result we see that if a function f is not continuous
at a given point a then it cannot be differentiable there. However the converse to the
proposition is not true: there are functions that are continuous at some point but fail
to be differentiable there. For example consider the behaviour of function f(x) = |x|
at x = 0. It is continuous there but not differentiable:

y

x

y = |x|

From the graph we see that f(x) converges to |0| = 0 as x → 0, so that it is continuous
there. However, if h > 0 then

f(h) − f(0)

h
=

|h| − |0|
h

=
h

h
= 1 ⇒ lim

h→0+

f(h) − f(0)

h
= 1,
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and if h < 0 then

f(h) − f(0)

h
=

|h| − |0|
h

=
−h

h
= −1 ⇒ lim

h→0−
f(h) − f(0)

h
= −1.

Thus we do have left and right limits but they are different, hence the required limit

cannot exist by Proposition 2.4. For this f we can say that it has a left derivative at

0 and a right derivative at 0 (denoted f ′
−(0) and f ′

+(0) respectively), but that they
are different.

More generally, the following is a direct consequence of Proposition 2.4:

Proposition 3.5. A function f : R → R is differentiable at a point a if and only if

it has left and right derivatives at that point, and they are equal.

Remark. The official definition of left and right derivatives are

f ′
−(a) = lim

h→0−
f(a + h) − f(a)

h
and f ′

+(a) = lim
h→0+

f(a + h) − f(a)

h
,

whenever these limits exist.

If we are dealing with a function that is defined on a subinterval of R of the
form [c, d] then we could use left and right derivatives to define what it means for
f to be differentiable on [c, d]. However in practice we are only really interested in
differentiability of f on open intervals, that is intervals of the form (c, d), in which case
the usual definition involving two-sided limits applies. This follows since if a ∈ (c, d)
then the fraction

f(a + h) − f(a)

h

is well-defined for all h satisfying |h| < min{a − c, d − a} (that is for all sufficiently

small h), and so h can tend to 0 while assuming both positive and negative values.
As with limits and continuity there are rules that allow us to break down the

problem of finding a derivative into simpler parts, such as those calculated in Propo-
sition 3.2.

Proposition 3.6. Let f, g : R → R be functions that are differentiable at some a ∈ R.

Then

(i) f + g is differentiable at a, with (f + g)′(a) = f ′(a) + g′(a).

(ii) fg is differentiable at a, with (fg)′(a) = f ′(a)g(a) + f(a)g′(a). [Product Rule]

(iii) If g(a) 6= 0 then f
g is differentiable at a with

(
f

g

)′
(a) =

f ′(a)g(a) − f(a)g′(a)

g(a)2
. [Quotient Rule]

Remark. If we use the d
dx notation, then the product and quotient rules are usually

written

d

dx
(uv) =

du

dx
v + u

dv

dx
, and

d

dx

(u

v

)
=

du

dx
v − u

dv

dx
v2

.
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Proof. All of these essentially follow by careful application of the calculus of limits.
For example, for the product rule (ii) we are assuming that both of the limits

f ′(a) = lim
h→0

f(a + h) − f(a)

h
and g′(a) = lim

h→0

g(a + h) − g(a)

h

exist, and want to show that the limit

lim
h→0

(fg)(a + h) − (fg)(a)

h

exists and equals the specified value. Now

(fg)(a + h) − (fg)(a) = f(a + h)g(a + h) − f(a)g(a)

= f(a + h)[g(a + h) − g(a)] + [f(a + h) − f(a)]g(a)

and so

(fg)(a + h) − (fg)(a)

h
= f(a + h) × g(a + h) − g(a)

h
+

f(a + h) − f(a)

h
× g(a).

But f is continuous at a, hence lim
h→0

f(a+h) = f(a), and so we may apply the calculus

of limits to the above to get

lim
h→0

(fg)(a + h) − (fg)(a)

h
= lim

h→0
f(a + h) × lim

h→0

g(a + h) − g(a)

h

+

(
lim
h→0

f(a + h) − f(a)

h

)
× g(a)

= f(a)g′(a) + f ′(a)g(a)

as required.
Similar manipulations will give the quotient rule (iii). To carry this out we will

need to make use of the fact that since we are assuming g is differentiable (and
hence continuous) at a with g(a) 6= 0, then the function is nonzero for all values of x
sufficiently close to a.

Induction and the techniques of the above proposition give the following:

Proposition 3.7. For each integer n ≥ 0 define fn : R → R by fn(x) = xn. Then

fn is differentiable on R with f ′
n(x) = nxn−1.

Proof. From Proposition 3.2 we already know that f0(x) = 1 and f1(x) = x are
differentiable on R with f ′

0(x) = 0 and f ′
1(x) = 1 (take c = 1, d = 0 and c = 0, d = 1

respectively).
Now suppose that there is some N ≥ 1 such that fn is differentiable with f ′

n(x) =
nxn−1 for all 0 ≤ n ≤ N . Since fN+1(x) = xN+1 = xNx = fN(x)f1(x), we see that
fN+1 is the product of two functions that are differentiable on R by our assumption,
and so by the product rule we know that fN+1 is also differentiable on R, with

f ′
N+1(x) = f ′

N (x)f1(x) + fN (x)f ′
1(x) = NxN−1 × x + xN × 1 = (N + 1)xN

as required. So now, by induction, the stated formula holds for all integers n ≥ 0.
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Remarks.

(i) The Binomial Theorem can be used to give an alternative route to proving this
result that avoids using induction.

(ii) Combining this proposition with another induction argument shows that every
polynomial is differentiable at each point of R.

Example 3.8. If we have f(x) = x17 − 3x8 + 4x5 then it is a sum of three functions
that are each differentiable on R, hence is itself differentiable on R by part (i) of
Proposition 3.6. Moreover we have

f ′(x) = 17x16 − 3 × 8x7 + 4 × 5x4 = 17x16 − 24x7 + 20x4.

Proposition 3.9. For each integer n ≥ 1 define the function gn by gn(x) =
1

xn
.

Then each gn is differentiable at every x 6= 0, with g′n(x) = − n

xn+1
.

Proof. Using the notation of the previous result, note that for every x 6= 0, fn(x) =

xn 6= 0 is differentiable and non-zero. Thus, since gn(x) =
f0(x)

fn(x)
, we can apply the

quotient rule to deduce that gn is differentiable on (−∞, 0) ∪ (0,∞). Moreover

g′n(x) =
f ′
0(x)fn(x) − f0(x)f ′

n(x)

fn(x)2

for all x 6= 0. But we know that f ′
0(x) = 0 and f ′

n(x) = nxn−1, and so

g′n(x) =
0 × xn − 1 × nxn−1

x2n
= − n

xn+1

as required.

Remark. These two propositions can be summarised by saying that for any integer
m the function x 7→ xm is differentiable wherever it is defined, with

d

dx
xm = mxm−1.

Here, by definition, xm =
1

x−m
if m < 0 (that is x−1 =

1

x
, x−2 =

1

x2
etc.).

Example 3.10. Consider the function g(x) = x7 + 1
x2 − 5

x10 . Writing this as
g(x) = x7 + x−2 − 5x−10 we see that g is the sum of three functions each of which is
differentiable whenever x 6= 0. Thus g(x) is differentiable whenever x 6= 0 and

g′(x) = 7x6 − 2x−3 + 50x−11 = 7x6 − 2

x3
+

50

x11
.

The final rule for calculating derivatives, known as the Chain Rule, involves com-
position of functions. Consider the function f(x) = (x + 1)2. Expanding this gives
f(x) = x2 + 2x + 1, and so f is differentiable on R with f ′(x) = 2x + 2 = 2(x + 1).
Our next result gives us another means of calculating this identity.
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Proposition 3.11 (Chain Rule). Let f, g : R → R be functions, and let F denote

the composition F = g ◦ f (that is, F (x) = g(f(x)) for each x ∈ R). If a ∈ R such

that f is differentiable at a and g is differentiable at f(a), then F is differentiable at

a with

F ′(a) = g′(f(a))f ′(a).

Proof. Define a function G : R → R by

G(k) =

{
g(f(a)+k)−g(f(a))

k − g′(f(a)) if k 6= 0,

0 if k = 0.

Then lim
k→0

G(k) = 0, since we assumed that g is differentiable at f(a). Hence G is

continuous at 0. Rearranging the equation above we see that

g(f(a) + k) − g(f(a)) = k[G(k) + g′(f(a))] for all k ∈ R. (∗)

Now for any h 6= 0

F (a + h) − F (a) = g
(
f(a + h) − f(a) + f(a)

)
− g(f(a))

= g(r(h) + f(a)) − g(f(a))

where we define r(h) = f(a + h)− f(a) for all h ∈ R. The right hand side of this last
equation is of the form of the left hand side of (∗), with k = r(h), and so

F (a + h) − F (a) = r(h)[G(r(h)) + g′(f(a))].

But f is differentiable at a, hence continuous there as well, thus

lim
h→0

r(h)

h
= f ′(a) and lim

h→0
r(h) = r(0) = 0.

That is, r is a function on R that is continuous at 0 and satisfies r(0) = 0, and G is
continuous at 0 and satisfies G(0) = 0. Hence x 7→ (G ◦ r)(x) is continuous at 0, with
lim
h→0

(G ◦ r)(h) = (G ◦ r)(0) = 0 by Proposition 2.27. So now

lim
h→0

F (a + h) − F (a)

h
= lim

h→0

r(h)

h
× lim

h→0
[G(r(h)) + g′(f(a))]

= f ′(a) × [0 + g′(f(a))] = g′(f(a))f ′(a)

as required.

Example 3.12. Define a function F on R by F (x) = (3x2 + x + 4)50. Deduce that
F is differentiable on R and find F ′(x).

Solution. Define functions f and g on R by f(x) = 3x2 + x + 4 and g(x) = x50.
Then F = g ◦ f , since F (x) = f(x)50. Now f and g are both polynomials, hence
differentiable on R, and so F is differentiable on R with F ′(x) = g′(f(x))f ′(x). From
our previous results about differentiating polynomials we have

f ′(x) = 3 × 2x + 1 = 6x + 1, and g′(x) = 50x49.

Thus
F ′(x) = 50f(x)49 × (6x + 1) = 50(3x2 + x + 4)49(6x + 1).
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Exercise 3.13. Define a function G by G(x) =
1

(4x3 + 7x2)10
. Deduce that G is

differentiable whenever x 6= 0,−7
4 and find G′(x)

Note that it would be foolish to try and expand out the function F and use the
usual rules for differentiating polynomials. Moreover for G such a technique is no
longer available to us.

With the results proved so far we can only differentiate polynomials and rational
functions. The following are the derivatives of some other useful functions:

• If f(x) = sin x then f ′(x) = cos x for all x ∈ R.

• If f(x) = cos x then f ′(x) = − sinx for all x ∈ R.

• If f(x) = tan x then f ′(x) = sec2 x = (sec x)2 for all x ∈ R such that x 6= (2n+1)π
2

for n = 0,±1,±2, . . ., and where sec x = (cos x)−1.

• If f(x) = ex then f ′(x) = ex for all x ∈ R. This is the only nonzero function
that satisfies both f ′(x) = f(x) (i.e. is equal to its own derivative) and f(0) = 1.

• If f(x) = log x then f ′(x) =
1

x
for all x > 0.

The derivative for sinx follows since for any x ∈ R and h 6= 0

sin(x + h) − sinx

h
=

sinx cos h + sin h cos x − sin x

h

=
sinh

h
cos x + sin x

cos h − 1

h
→ 1 × cos x + sin x × 0 = cos x

by Example 2.14. For cos x we can do a similar calculation, or use the chain rule
since cos x = sin(x + π

2 ). For tan x we use the quotient rule since tan x = sin x
cos x .

Exercise 3.14 (S02 4). Find the derivatives of the following functions by using the
product, quotient and chain rules, along with known derivatives:

f(x) = ex sin 4x + x2

h(x) =
(2x + 1)4

x − 3
(x 6= 3)

Find the equation of the tangent to the graph of h at the point (−1
2 , 0).

The Mean Value Theorem and consequences

Theorem 3.15 (Rolle’s Theorem). Let f be a function from [a, b] to R such that

f is continuous on [a, b] and differentiable on (a, b). Furthermore suppose that f(a) =
f(b). Then there is some c ∈ (a, b) such that f ′(c) = 0.
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Proof. If f is constant, that is if f(x) = f(a) for all x ∈ [a, b], then the theorem
follows immediately from Proposition 3.2. So suppose that f(x) 6= f(a) for some
x ∈ (a, b). Then we know from the Intermediate Value Theorem (Theorem 2.32)
that there numbers m,M ∈ R and points x1, x2 ∈ [a, b] such that f(x1) = M and
f(x2) = m, and that m ≤ f(x) ≤ M for all x ∈ [a, b].

Since f is not constant one of m or M must differ from f(a); suppose it is M ,
then x1 6= a and x1 6= b, so that x1 ∈ (a, b). Thus f is differentiable at this point,
and so must have left and right derivatives that are equal. But for all (small) h > 0

f(x1 + h) − f(x1)

h
=

f(x1 + h) − M

h
≤ 0 ⇒ f ′

+(x1) = lim
h→0+

f(x1 + h) − f(x1)

h
≤ 0,

and for all (small) h < 0

f(x1 + h) − f(x1)

h
=

f(x1 + h) − M

h
≥ 0 ⇒ f ′

−(x1) = lim
h→0−

f(x1 + h) − f(x1)

h
≥ 0.

Thus we have f ′(x1) = f ′
+(x1) ≤ 0 and f ′(x1) = f ′

−(x1) ≥ 0, and the only way for
this to be true is if f ′(x1) = 0.

If in fact M = f(a) then we must have m = f(x2) < f(a) and a similar argument
will give that f ′(x2) = 0.

This result just says that if a function f defined on a closed interval of the form
[a, b] is sufficiently well-behaved to have a tangent at each point in (a, b), then at
least one of these tangents must be horizontal. However it gives no information
about precisely how many solutions there are to the equation f ′(c) = 0.

y

x

horizontal tangents

a bc

Theorem 3.16 (Mean Value Theorem). Let f be a function from [a, b] to R such

that f is continuous on [a, b] and differentiable on (a, b). Then there is some c ∈ (a, b)
such that

f ′(c) =
f(b) − f(a)

b − a
.

Proof. Define F : [a, b] → R by

F (x) = f(x) − (x − a)

(
f(b) − f(a)

b − a

)
.

Then F is the sum of two functions both of which are continuous on [a, b] and dif-
ferentiable on (a, b). Hence F is also continuous on [a, b] and differentiable on (a, b).
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Moreover F (a) = F (b) = f(a). Thus F satisfies the hypotheses of Rolle’s Theorem,
and so there must be some c ∈ (a, b) such that F ′(c) = 0.

But now note that

F ′(x) = f ′(x) − f(b) − f(a)

b − a
,

and so

f ′(c) =
f(b) − f(a)

b − a
.

as required.

This theorem says that if the function f defined on the interval [a, b] is suitably
well behaved then there is a point in the interval where the tangent to f has the same
slope as the line segment joining (a, f(a)) to (b, f(b)).

y

xa bc

Exercise 3.17 (S04 4(b)). Verify that the function f : [0, π] → R defined by

f(x) = x2 sin x

satisfies the hypotheses of Rolle’s Theorem. Hence show that there is some x ∈ (0, π)
that satisfies the equation

x = −2 tan x.

Example 3.18. Verify the Mean Value Theorem for f(x) = 3x2 − 5x + 4 on [1, 4].

Solution. First note that f is a polynomial hence continuous and differentiable on all
of R. Thus it is continuous on [1, 4] and differentiable on (1, 4). Also

f(4) − f(1)

4 − 1
=

32 − 2

4 − 1
= 10,

and f ′(x) = 6x − 5. So we must find some c ∈ (1, 4) such that f ′(c) = 10, i.e. some
c ∈ (1, 4) such that

6c − 5 = 10.

But the only real number satisfying this equation is c = 5
2 , which does indeed lie in

our interval.

One important use of the Mean Value Theorem is that it allows us to prove that if
a function has positive derivative in some interval then it has to be strictly increasing
— a result that is intuitively obvious since all the tangents in this interval are pointing
up and to the right.
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Proposition 3.19. Suppose that the function f is differentiable on (a, b) for some

a, b ∈ R such that a < b.

(a) If f ′(x) = 0 for all x ∈ (a, b) then f is constant.

(b) If f ′(x) > 0 for all x ∈ (a, b) then f is strictly increasing.

(c) If f ′(x) < 0 for all x ∈ (a, b) then f is strictly decreasing.

Proof. To show that f is constant if it has zero derivative fix any two points x1, x2 ∈
(a, b) with x1 < x2. Then f restricted to [x1, x2] satisfies the hypotheses of the Mean
Value Theorem and so there is some c ∈ (x1, x2) such that

f ′(c) =
f(x2) − f(x1)

x2 − x1
. (†)

But by assumption f ′(c) = 0, hence we must have f(x1)−f(x2) = 0, so that f(x1) =
f(x2) as required.

If, instead, f ′(x) > 0 for all x ∈ (a, b), then the same argument produces a
c ∈ (x1, x2) such that (†) holds, and now our assumption is that f ′(c) > 0. But this
in turn implies that f(x2) − f(x1) > 0 (since x2 − x1 > 0) and so f(x2) > f(x1) as
required. The proof of part (c) is similar.

The techniques we have developed so far allow us to prove the existence of nth
roots of nonnegative real numbers. In fact our work can extended as follows. For any
positive rational number r (that is any number of the form r = m

n for integers m ≥ 1
and n ≥ 1) we can make the following definition

xr = (x1/n)m for all x > 0.

That is, take the nth root of x then raise it to the mth power. Using the uniqueness
aspect of Proposition 2.33 we can show that this definition does not depend on the
way we write r (for example if we took r = 1

2 , then we also have r = 3
6 , and so

we should check that x1/2 = (x1/6)3), and also that xr = (xm)1/n. Moreover the
uniqueness implies that the following formulae hold:

(xr)s = xrs, xrxs = xr+s

for all x > 0 and positive rationals r and s. Furthermore, if we define x−r to be
1

xr
and x0 = 1 for all x > 0 then the above formulae remain true for any choice of

rationals r and s.

Similarly we can use aspects of the Mean Value Theorem etc. to actually define

what we mean by log x and ex. Indeed, one way to define the natural logarithm is to
set

log x =

∫ x

1

1

t
dt for all x > 0.

That is log x is the integral of
1

t
from 1 to x — the theory of integration is covered

in detail in MS2002. Immediate consequences of this definition are that log 1 = 0
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and that log x is differentiable with d
dx log x = 1

x . These can then be used to prove
well-known formulae such as

log xy = log x + log y and log xn = n log x (∗)

for any real numbers x, y > 0 and integer n ≥ 0. Also, since d
dx log x = 1

x > 0 for all
x > 0, we see that log x is strictly increasing on (0,∞), and from (∗) it follows that
log x → −∞ as x → 0+ and log x → +∞ as x → +∞. As a result for each y ∈ R

there is a unique solution x to the equation y = log x (the proof of this is essentially
the same as the proof of Proposition 2.33). This solution x is denoted ey, and this is
one way to define the exponential function. It follows that

y = log(ey) for all y ∈ R and x = elog x for all x > 0.

Then, from (∗), we get that ex+y = exey for all x, y ∈ R.

Implicit differentiation

Thus we can use calculus to define roots, logarithms and exponentials, and from the
definition of log x we get immediately that d

dx log x = 1
x . But what about differentia-

bility of xr and ex? This is can be established using a technique known as implicit

differentiation.

Example 3.20. Consider the equation

x2 + y2 = 1. (C)

This is the equation of the circle of radius 1 whose centre is (0, 0). It does not define
a function R → R for two important reasons. First note that if x > 1 or x < −1
then x2 > 1 hence y2 = 1− x2 < 0, and there are no real numbers y that satisfy this
inequality. So in order to have x, y ∈ R satisfying (C) we must have x ∈ [−1, 1]. But
there is perhaps a more important reason that (C) does not define a function which
is that for any x ∈ (−1, 1) there are two solutions y to the equation (C), namely√

1 − x2 and −
√

1 − x2.

Note that f1(x) =
√

1 − x2 and f2(x) = −
√

1 − x2 are both functions [−1, 1] → R.
They are the two branches of the relation x2 + y2 = 1.

y

y = f1(x)

y = f2(x)

x

( 1√
3
,
√

2√
3
)
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DIFFERENTIATION

Suppose we wanted to find the equation of the tangent to the point ( 1√
3
,
√

2√
3
)

on (C). This lies on the branch f1, and so we could calculate f ′
1(

1√
3
) to find the slope

of the tangent.
However, an alternative is to instead differentiate the equation (C) directly. We

think of y as a function of x, then y2 is the product of y with itself and so the product
rule tells us that

d

dx
(y2) =

dy

dx
× y + y × dy

dx
= 2y

dy

dx
.

So then differentiating (C) gives

d

dx
(x2 + y2) =

d

dx
(1) ⇒ 2x + 2y

dy

dx
= 0 ⇒ dy

dx
= −2x

2y
= −x

y
if y 6= 0.

Thus when x = 1√
3

and y =
√

2√
3

we have

dy

dx
= −

1√
3√
2√
3

= − 1√
2
,

and so the tangent is

y −
√

2√
3

= − 1√
2
(x − 1√

3
) ⇔

√
2y + x =

√
3.

If we wanted to use the more traditional route then we would have to differentiate
f1(x) =

√
1 − x2. We know how to differentiate the function f(x) = 1−x2 inside the

square root (f ′(x) = −2x for all x ∈ R), and so if we wanted to apply the chain rule
to find f ′

1(x) then we need to know how to differentiate square roots. The following
answers this problem:

Proposition 3.21. For any rational number r the function f(x) = xr is differentiable

on (0,∞) with f ′(x) = rxr−1 (cf. the case when r is an integer).

Proof. Suppose we have r = m
n for integers m and n, and let y = xr = (xm)1/n.

Raising both sides to the nth power gives

yn =
(
(xm)1/n

)n
= (xm)1 = xm.

Thus we can differentiate both sides, using the chain rule on the left hand side, to get

nyn−1 × dy

dx
= mxm−1

Since y > 0 we can divide both sides by yn−1 to get

dy

dx
=

mxm−1

nyn−1
=

m

n
× xm−1

(
(x1/n)m

)n−1 = rxm−1−m(n−1)
n

and

m − 1 − m(n − 1)

n
=

n(m − 1) − m(n − 1)

n
=

m − n

n
= r − 1

as required.
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Implicit differentiation

Recall that for each x ∈ R the number ex is the unique solution y to the equation
x = log y. Differentiating this equation with respect to x and noting that d

dt log t = 1
t

we can arrive at the formula d
dxex = ex in a similar way to the proposition above.

Indeed, using exponentials and logarithms we can actually define xr for any x > 0
and all r ∈ R, and establish the formula d

dxxr = rxr−1 by an alternative route that
involves the chain rule.

Exercise 3.22 (A03 6(a)). Find the tangent to the implicitly defined curve

x sin y + cos x + e− sinx = e−1

at the point (π
2 , π). Where does this tangent intersect the x-axis?
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CURVE SKETCHING AND MINMAX PROBLEMS

4 Curve Sketching and MinMax Problems

Maxima and minima

Definition 4.1. Let f : R → R be a function and a, b ∈ R. Then f has a local

maximum at a if there is some interval (c1, d1) ⊂ R such that a ∈ (c1, d1) and

f(x) ≤ f(a) for all x ∈ (c1, d1).

Similarly, f has a local minimum at b if there is some interval (c2, d2) ⊂ R such that
b ∈ (c2, d2) and

f(x) ≥ f(b) for all x ∈ (c2, d2).

Note that we do not require that f(a) be the largest value that the function ever
takes, only that it is greater than f(x) for all x (sufficiently) close to a. Similarly for
f(b). Consider the following graph of a function f defined on an interval [a, e]:

y

xa b c d
e

Here b is the absolute maximum (and also a local maximum), a and c are local
minima, d a local maximum and e the absolute minimum.

The next result gives a method for locating local maxima and minima.

Proposition 4.2. Let f be a continuous function on the interval [c, d]. If f attains its

maximum value at some x1 ∈ (c, d) and is differentiable at this point, then f ′(x1) = 0.
Similarly if f attains its minimum value at some x2 ∈ (c, d) and is differentiable there,

then f ′(x2) = 0.

Proof. This is essentially a rehash of the proof of Rolle’s Theorem. Since f(x1) is the
maximum value that f takes on this interval, f(x1 + h) ≤ f(x1) for all h 6= 0, so that

f(x1 + h) − f(x1) ≤ 0 for all h 6= 0.

But f is differentiable at x1 so the left and right derivatives must exist, and they
must be equal to f ′(x1). Hence

f(x1 + h) − f(x1)

h
≥ 0 for all h < 0

and so

f ′(x1) = f ′
−(x1) = lim

h→0−
f(x1 + h) − f(x1)

h
≥ 0.

Similarly

f ′(x1) = f ′
+(x1) = lim

h→0+

f(x1 + h) − f(x1)

h
≤ 0,
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The second derivative test

since now we require h > 0 in the limit. Thus we must have f ′(x1) = 0, as required.
The proof for the point x2 runs along the same lines.

So to look for the local maxima and minima of a differentiable function f we
should calculate its derivative f ′ and look for solutions of the equation f ′(x) = 0,
since if f has a local maximum or minimum at some point a then clearly we can
restrict f to an interval of the form [c, d] such that a ∈ (c, d) and f(a) is the absolute
maximum or minimum for this restriction. The points where f ′(x) = 0 are known as
critical or stationary points of the function f .

Exercise 4.3. Examine the critical points of the function f : [−3, 3] → R defined by
f(x) = x3 − 3x and sketch its graph.

The second derivative test

In the previous example it was easy to determine which critical point was a local
maximum and which a local minimum since the function was relatively simple. This
may not always be the case and so we now develop a more methodical technique
for analysing this question. Suppose f : R → R is a function that is differentiable
everywhere on R, then we have a new function f ′ : R → R defined by setting

f ′(x) = lim
h→0

f(x + h) − f(x)

h

for each x ∈ R. The number f ′(x) is a measure of the rate at which the function is
changing at the point x — it is the slope of the tangent to the graph of f at this
point. If it is positive then f is increasing and if it is negative then f is decreasing.
Moreover if f has a local maximum or minimum at x then f ′(x) = 0.

So now suppose that the function f ′ is itself differentiable. That is for each x the
following limit exists:

lim
h→0

f ′(x + h) − f ′(x)

h
.

The resulting function is called the second derivative of f and is denoted f ′′, that is,
f ′′ = (f ′)′. If we are writing y = f(x) then the derivative and second derivative are

often denoted dy
dx and d2y

dx2 respectively.

Suppose f and f ′ are differentiable (with f ′′ continuous) and that f ′(a) = 0 and
f ′′(a) > 0 for some a ∈ R. Then the function f ′(x) is increasing at x = a, that is the
gradient of f at x = a is increasing. Since it is zero at x = a it must be negative to
the immediate left of a and positive to the immediate right. That is, the graph must
take the form

horizonal tangent

positive slopenegative slope
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CURVE SKETCHING AND MINMAX PROBLEMS

and so this point is a local minimum. If, conversely, f ′(b) = 0 and f ′′(b) < 0 then the
gradient f ′(x) is decreasing around x = b. Thus it must be positive to the immediate
left of x = b and negative to the immediate right. That is, the graph must take the
form

PSfrag

horizonal tangent

positive slope
negative slope

and so this point is a local maximum.

This is summarised in the following:

Theorem 4.4. Suppose the function f : R → R is twice differentiable and that

f ′(a) = 0 for some a ∈ R.

(a) If f ′′(a) < 0 then x = a is a local maximum.

(b) If f ′′(a) > 0 then x = a is a local minimum.

(c) If f ′′(a) = 0 then we have no information.

Remarks. (i) A function f is twice differentiable if it is differentiable on R and if
the resulting function f ′ : R → R is also differentiable. There are functions that are
differentiable but not twice differentiable.

A function is infinitely differentiable if we can carry on repeatedly differentiating
each subsequent derivative, i.e. f is differentiable, as is f ′, and so is f ′′ and so on. It
is not hard to check that all polynomials are infinitely differentiable.

(ii) For part (c) consider the functions f(x) = x4, g(x) = −x4 and h(x) = x3.

Definition 4.5. Let f : R → R be a twice differentiable function and let a ∈ R. If
there are c, d ∈ R satisfying c < a < d such that f ′′(a) = 0 and either

(i) f ′′(x) < 0 for x ∈ (c, a) and f ′′(x) > 0 for x ∈ (a, d), or

(ii) f ′′(x) > 0 for x ∈ (c, a) and f ′′(x) < 0 for x ∈ (a, d)

then a is called a point of inflection of f . That is, a is a point of inflection if f ′′

changes sign at that point.

Note that if f ′′(x) > 0 on an interval, then f ′(x) is increasing on that interval
and so the graph of f is convex. If, on the other hand, f ′′(x) < 0 on an interval
then f ′(x) is decreasing on that interval and so the graph of f is concave. Thus at
a point of inflection the graph of f changes from being convex to being concave, or
vice versa. It is important to note that a need not be a critical point of f .
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The second derivative test

f ′′(x) < 0,
f ′′(x) < 0,

f ′′(x) > 0,

f ′′(x) > 0,

convex

convex

concave
concave

Example 4.6. Consider the functions f(x) = x3 and g(x) = x3 + x on R. Both are
polynomials and so infinitely differentiable, with

f ′(x) = 3x2 ≥ 0, f ′′(x) = 6x, and g′(x) = 3x2 + 1 > 0, g′′(x) = 6x.

Thus f has a critical point at x = 0, but g has no critical points since 3x2 + 1 ≥ 1 for
all x ∈ R. However we have f ′′(0) = g′′(0) = 0, f ′′(x) = g′′(x) < 0 when x < 0 and
f ′′(x) = g′′(x) > 0 when x > 0. So for both of these functions we have that x = 0
is a point of inflection since the second derivatives change sign. Note that the only
solution to f(x) = 0 is x = 0, which is also the case for g(x) = 0. Their respective
graphs are thus

yy

y = x3 y = x3 + x

stationary point nonstationary point

of inflectionof inflection

xx

Exercise 4.7 (S03 5(b)). Consider the function

y = (x − 1)2(x + 2)2.

Find the critical points of y and determine their nature. Where does the graph of y
meet the x-axis and the y-axis?

Use this information to sketch the graph of y.

Example 4.8. Consider the function f(x) = x2(x2 + 4). Find its critical points and
determine their nature. Find any other points of inflection. Find the sets on which
it is strictly increasing and decreasing. Describe the behaviour of the function as
x → +∞ and x → −∞

Use all of this information to draw a sketch of the function.

Solution. By the product rule

f ′(x) = 2x(x2 + 4) + x2 × 2x = 2x(2x2 + 4) = 4x(x2 + 2)
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CURVE SKETCHING AND MINMAX PROBLEMS

which is equal to zero precisely when x = 0 since x2 + 2 ≥ 2 for all x ∈ R. Also,

f ′′(x) = 4(x2 + 2) + 4x × 2x = 12x2 + 8

which is greater than zero for all x. In particular f ′′(0) = 8 > 0, and so there
is a minimum when x = 0 and f(0) = 0. Also, there are no points of inflection.
Moreover, because x2 + 2 > 0 for all x ∈ R, f is strictly increasing on (0,∞) and
strictly decreasing on (−∞, 0).

Since f(x) = x4(1 + 4
x2 ), we have that f(x) ≈ x4 for large x, since 4

x2 → 0 as
x → ±∞. Thus f(x) → +∞ as x → +∞ and as x → −∞. Hence the graph of f is
of the form:

x

y

0

Exercise 4.9 (S02 5(b)). For the function

g(x) =
2x

3x2 + 1

find the critical points and their nature, find the sets on which g is strictly increasing
and strictly decreasing, and find the points of inflection. What happens as x → +∞
and x → −∞?

Use this information to sketch the graph of g.

Example 4.10. Consider the function f(x) = (x − 1)5. Find its critical points and
determine their nature. Find any other points of inflection. Find the sets on which
it is strictly increasing and decreasing. Describe the behaviour of the function as
x → +∞ and x → −∞

Use all of this information to draw a sketch of the function.

Solution. Applying the chain rule twice we get

f ′(x) = 5(x − 1)4 and f ′′(x) = 20(x − 1)3.

Thus f ′(x) = 0 precisely when x = 1, and f ′′ changes sign at this point. For all other
x we have that f ′(x) > 0, so that f is strictly increasing on (−∞, 1) and (1,∞),
and there is one critical point, but it is a point of inflection rather than being a
local maximum or minimum. Note that f(x) = 0 exactly when x = 1. Finally, we
have f(x) = [x(1 − 1

x)]5 = x5(1 − 1
x)5, and since 1

x → 0 as x → ±∞, we have that
(1 − 1

x)5 → 1, and so f(x) ≈ x5 for large x. Thus f(x) → +∞ as x → +∞ and
f(x) → −∞ as x → −∞. Hence the graph of f is of the form:
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Applied maximum and minimum problems

x

y

(0,−1)

(1, 0)

Applied maximum and minimum problems

The techniques we have learned in this course can be used to solve problems that
involve some sort of optimisation. The basic strategy for such a problem is the
following:

Step 1: Identify the quantity to be maximised/minimised, and all of the variables it
depends on.

Step 2: Use (hopefully obvious) constraints to eliminate all but one of the variables,
and determine the range of values this variable should take to be meaningful.

Step 3: Find the absolute maximum and/or minimum by differentiating with respect
to the one variable, making sure to check the values of the function at the end
points (if these exist).

Exercise 4.11. If we want to make a cylindrical tin can to hold 250cm3 of baked
beans, what radius and height will minimise the cost of materials?

Example 4.12. Show that of all the rectangles of a given perimeter, the one with
the greatest area is a square.

Solution. Let the perimeter of the rectangle be l, and suppose that the sides have
lengths x and y. So then if A denotes the area of our rectangle we have

l = 2x + 2y and A = xy

x

y

We can use the first equation rewrite A as a function of the one variable x, since

y =
l

2
− x. (†)

So then

A(x) = x
( l

2
− x

)
=

lx

2
− x2,
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CURVE SKETCHING AND MINMAX PROBLEMS

and we must have 0 ≤ x ≤ l/2 to ensure that the lengths x and y are both nonnegative.
Differentiating with respect to x gives

A′(x) =
l

2
− 2x

which is equal to 0 when x = l/4. That is, there is a stationary point when x = l/4.
But since A(0) = 0, A(l/4) = l2/8− l2/16 = l2/8 > 0 and A(l/2) = 0 we see that the
maximum area occurs when x = l/4. When this happens we have from (†) that

y =
l

2
− l

4
=

l

4
= x

and so our rectangle is in fact a square as required.

Exercise 4.13. A woman at a point A on the shore of a circular lake with radius
2km wants to arrive at the point C diametrically opposite A on the other side of the
lake in the shortest possible time. She can walk at the rate of 4km/h, and row a boat
at 2km/h. How should she proceed?

Example 4.14. A box with an open top is to be constructed from a square piece of
cardboard 4m wide by cutting out a square from each of the four corners and bending
up the sides. Find the largest volume such a box can have.

Solution. The diagram for this situation is:

x

x
4 − 2x

4 − 2x

4 − 2x

4

where x is the length of the side of the square removed from each corner. Since the
total length is 4m, the length of a side of the base is 4 − 2 × x = 2(2 − x)m. Thus
the area of the base will be [2(2 − x)]2 = 4(2 − x)2 m2. Moreover, the height of the
box will be xm, and so the overall volume is

V (x) = x × 4(2 − x)2 = 4x(2 − x)2

and note that we must have x ≥ 0, and 4 − 2x ≥ 0, so that we must only consider
x ∈ [0, 2]. But differentiating with respect to x gives

V ′(x) = 4 × (2 − x)2 + 4x × 2(2 − x) × (−1) = 4(2 − x)
[
(2 − x) − 2x

]

= 4(2 − x)(2 − 3x)

which is zero precisely when x = 2 and x = 2
3 . The maximum value of V will occur at

either one of these values, or when x = 0, which is the other endpoint for the interval
of values x may assume. But

V (0) = V (2) = 0, and V
(2

3

)
= 4 × 2

3
×

(4

3

)2
=

128

27
.

Thus the largest volume is 3
2m3.
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Exercise 4.15 (S02 6(b)). A Norman window has the shape of a rectangle sur-
mounted by a semicircle (Thus the diameter of the semicircle is equal to the width
of the rectangle). If the perimeter of the window is 10m, find the dimensions of the
window so that the greatest possible amount of light is admitted.

What is the area of the window when this achieved?

Example 4.16. Find the point on the parabola y = x2 that is closest to the point
(3, 0).

Solution. Consider the following diagram representing this situation:

x

y

(x, x2)

y = x2

(3, 0)

If d denotes the distance of the point (3, 0) from a general point on the parabola
(x, x2) then we have

d(x) =
√

(x − 3)2 + (x2 − 0)2

by Pythagoras’ Theorem. We wish to minimise the value of d as x varies, but the
minimum value of d will occur for the same value of x as the minimum value of the
function D = d2, and it is easier to minimise D since it does not involve square roots.
So we have

D(x) = (x − 3)2 + x4 = x4 + x2 − 6x + 9

and hence
D′(x) = 4x3 + 2x − 6 = 2(2x3 + x − 3).

By inspection we see that x = 1 is a root of D′(x) = 0, and in fact

D′(x) = 2(x − 1)(2x2 + 2x + 3).

But 2x2 + 2x + 3 = 2(x + 1
2)2 + 5

2 > 0 for all x, and so D′(x) = 0 only when x = 1.
Also,

D′′(x) = 12x2 + 2 > 0

for all x, so that we have a local minimum when x = 1. Thus the point on y = x2

that is closest to (3, 0) is when x = 1 and so y = 12 = 1 as well. Thus the required
point is (1, 1).

Exercise 4.17. Find the area of the largest rectangle that can be inscribed in a
semicircle of radius r, with one side of the rectangle on the straight side of the
semicircle.

Example 4.18. Find the equation of the line through the point (3, 5) that cuts off
the least area from the first quadrant.
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Solution. Let the gradient of the line through (3, 5) be m, so the set up looks some-
thing like:

x

y

(3, 5)

y = mx + 5 − 3m

The line has equation

y − 5 = m(x − 3) ⇒ y = mx + 5 − 3m.

When x = 0 we have y = 5 − 3m and when y = 0 we have x = (3m − 5)/m. Note
that we must have m < 0 for the line to actually cut off a triangle, whose area is thus

A(m) =
1

2
× (5 − 3m) × 3m − 5

m
=

1

2

(
30 − 9m − 25

m

)
.

Differentiating this function of m we get

A′(m) =
1

2

(
−9 +

25

m2

)

which is equal to zero when

m2 =
25

9
⇒ m = ±5

3
.

But recall that we need m < 0, and so the critical point of interest occurs when
m = −5/3. Note also that

A′′(m) = − 25

m3

which is greater than zero for all m < 0. Thus we do have a minimum when m = −5/3.
Hence the equation of the line that cuts off the least area is

y = −5

3
x + 5 + 5 ⇔ 3y = 30 − 5x.
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