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MATHG037 2
0.1 Introduction

Lecturer
J.P. McCarthy

Office

Meetings before class by appointment via email only.

Email

jippo@campus.ie

Web

http://irishjip.wordpress.com

This page will comprise the webpage for this module and as such shall be the venue for
course announcements including definitive dates for continuous assessments. This page shall
also house such resources as a copy of these initial handouts, the exercises, a copy of the
course notes, links, as well as supplementary material. Please note that not all items here
are relevant to MATHG6037; only those in the category ‘MATHG6037’. Feel free to use the
comment function therein as a point of contact.

Module Objective

This module contains further calculus including methods of integration and partial differ-
entiation. An introduction to numerical methods and the theory of Laplace transforms
completes the module.

Module Content

Further Calculus

Integration by Parts and Partial Fractions. Functions of two or more variables. Surfaces.
Partial Derivatives. Applications to Error Analysis.

Numerical Methods

Solving equations using the Bisection Method and the Newton-Raphson Method. Approxi-
mate definite integrals using the Midpoint, Trapezoidal and Simpson’s Rules.
Introduction to Laplace Transforms

Definition to transform. Determining the Laplace transform of basic functions. Development
of rules. First shift theorem. Transform of a derivative. Inverse transforms. Applications to
solving Differential Equations. Applications to include the Damped Harmonic Oscillator.
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Assessment

Total Marks 100: End of Year Written Examination 70 marks; Continuous Assessment 30
marks.

Continuous Assessment

The Continuous Assessment will be divided equally between a one hour written exam in
Week 6 and your weekly participation in the Maple Lab.

Absence from a test will not be considered accept in truly extraordinary cases. Plenty of
notice will be given of the test date. For example, routine medical and dental appointments
will not be considered an adequate excuse for missing the test.

Lectures

It will be vital to attend all lectures as although I intend that there will be a copy of the
course notes available within the month, many of the examples, proofs, etc. will be completed
by us in class.

Maple Labs

Maple Labs will commence next week and are designed both to introduce you to this software
and to aid your understanding of the course material.

Exercises

There are many ways to learn maths. Two methods which arent going to work are
1. reading your notes and hoping it will all sink in
2. learning off a few key examples, solutions, etc.

By far and away the best way to learn maths is by doing exercises, and there are two main
reasons for this. The best way to learn a mathematical fact/ theorem/ etc. is by using it in
an exercise. Also the doing of maths is a skill as much as anything and requires practise.

I will present ye with a set of exercises every week. In this module the “Lecture-Supervised
Learning” is comprised of you doing these exercises, giving them to me on a weekly basis,
marking them, and returning them. In addition I will provide a set of solutions online.
To protect myself from mounting corrections I must warn you that the only work from the
previous week shall be corrected. For example, do not expect me to correct work you did in
week 2 to be corrected in week 10. Everyone shall have access to the solution sets however.
The webpage may contain a link to a set of additional exercises. Past exam papers are fair
game. Also during lectures there will be some things that will be left as an exercise. How
much time you can or should devote to doing exercises is a matter of personal taste but be
certain that effort is rewarded in maths.
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Reading

Your primary study material shall be the material presented in the lectures; i.e. the lecture
notes. Exercises done in tutorials may comprise further worked examples. While the lectures
will present everything you need to know about MATHG6037, they will not detail all there
is to know. Further references are to be found in the library in or about section 510 and
510.2462. Good references include:

e J. Bird, 2006, Higher Engineering Mathematics, Fifth Ed., Newnes.

e A. Croft & R. Davison, 2004, Mathematics for Engineers — A Modern Interactive
Approach, Pearson & Prentice Hall,

The webpage will contain supplementary material, and contains links and pieces about topics
that are at or beyond the scope of the course. Finally the internet provides yet another
resource. Even Wikipedia isnt too bad for this area of mathematics! You are encouraged to
exploit these resources; they will also be useful for for further maths modules.

Exam

The exam format will roughly follow last year’s. Acceding to the maxim that learning off a
few key examples, solutions, etc. is bad and doing exercises is good, solutions to past papers
shall not be made available (by me at least). Only by trying to do the exam papers yourself
can you guarantee proficiency. If you are still stuck at this stage feel free to ask the question
come tutorial time.
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0.2 Motivation: What makes a good Door Closer?

Figure 1: A good door closer should close automatically, close in a gentle manner and close
as fast as possible.

One possible design would be to put a mass on the door and attach a spring to it (just
for ease of explanation we’ll only worry about one dimension).

Assuming that the door is swinging freely the only force closing the door is the force
of the spring. Now Hooke’s Law states that the force of a spring is directly proportion to
it’s distance from the equilibrium position. If the door is designed so that the equilibrium
position of the spring corresponds to when the door is closed flush, then if z(t) is the position
of the door t seconds after release, then the force of the spring at time ¢ is given by:

where k£ € R is known as the spring constant.
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We will see later on that this system does close the door automatically but the balance
between closing the door gently and and closing the door quickly is lost. Indeed if the door
is released from rest at ¢ = 0, then the speed of the door will have the following behaviour:

v(t)

Figure 2: With a spring system alone, the door will quickly pick up speed and slam into the
door-frame at maximum speed.

Clearly we need to slow down the door as it approaches the door-frame. A simple model
uses a hydraulic damper:

g~ A

Figure 3: A hydraulic damper increases its resistance to motion in direct proportion to speed.

With the force due to the hydraulic damper proportional to speed, the force of the
hydraulic damper at time ¢ will be:

for some A € R. Now by Newton’s Second Law:

and the fact that speed is the first derivative of distance, and in turn acceleration is the
first derivative of speed, means that the equation of motion is given by:
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We will see much later on that suitably chosen k£ and A will provide us with a system
that closes automatically, closes in a gentle manner and closes as fast as possible.
Equations of this form turn up in many branches of physics and engineering. For example,
the oscillations of an electric circuit containing an inductance L, resistance R and capacitance

C in series are described by
d?*q dg 1
L—+4+R—+ =q=0 1
ae Ty et 1)

in which the variable ¢(t) represents the charge on one plate of the capactitor. These class
of equations, linear differential equations,

may be solved in various different ways. In this module we will explore one such method
— that of Laplace Transforms.

Figure 4: Top Gear dropped a VW Beetle from a height of 1 mile and it spun in the air as
it fell.
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If we are trying to formulate a model for the fall of this car we would have to try and
account for the way the roll of the car means that the coefficient of the drag term (Av(t))
varies between its maximum and minimum in a wave-like way:

A(t)

A function with this behaviour is:

A(t) = %(M +m) + %(M —m) sin wt (2)

where M and m are the maximum and minimum of \(¢) and w is a constant related to the
angular frequency. Then the equation of motion is of the form:

Neither the method of using Laplace Transforms nor any other method I know of solves
this differential equation.

Unfortunately this is typical, and for many systems for which a differential equation may
be drawn, it may be impossible to solve the equations. There are a number of numerical
techniques which can give approximate answers. However if we are participating in some
industrial project with millions spent on it we don’t want to be chancing our arms on any old
estimate or guess. Approzimation Theory aims to control these errors as follows. Suppose
we have a Differential Equation with solution y(z). An approximate solution A,(x) to
the equation can be found using some numerical method. If the approximation method is
sufficiently ‘nice’ we may be able to come up with a measure of the error:

Here | - | is some measure of the distance between y(z) and A,(x). The most common
measure here would be maximum error:

We would call the parameter ¢ here the control or the acceptable error. Some classes
of problem are even nicer in that with increasing computational power we can develop a se-

quence of approximate solutions { A} (), A2(x), A3(x), ... } with decreasing errors {e1, €5, €3, . ..

}:
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Even nicer still from a mathematical point of view if we can find a sequence of approxi-
mations with errors decreasing to zero:

In this case we say that the sequence of approximations converges.

In this module we will take a first foray into the approximation theory of numerical
methods by estimating the roots of equations and of estimating numerical integrals.

The first chapter will focus on some of the mathematical background needed to look at
these areas.



Chapter 1

Further Calculus

1.0.1 Outline of Chapter

e Review of Integration

Integration by Parts and Partial Fractions

Functions of two or more variables

Surfaces

Partial Derivatives

Applications to Error Analysis

10
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1.1 Review of Integration

Differentiation

In the figure below, the line from a to b is called a secant line.

Figure 1.1: Secant Line.

Introduce the idea of slope. The slope of a line is something intuitive. A steep hill has
a greater slope than a gentle rolling hill. The slope of the secant line is simply the ratio of
how much the line travels vertically as the line travels horizontally. Denote slope by m:

What about the slope of the curve? From a to b it is continuously changing. Maybe
at one point its slope is equal to that of the secant but that doesn’t tell much. It could be
estimated, however, using a ruler the slope at any point. It would be the tangent, as shown:

Figure 1.2: Tangent Line

The above line us the slope of the curve at x.
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Construct a secant line:

Figure 1.3: Secant line and Tangent line

Now the slope of this secant is given by:

It is apparent that the secant line has a slope that is close, in value, to that of the
tangent line. Let A become smaller and smaller:

Figure 1.4: Secant line approaching slope of Tangent line

The slope of the secant line is almost identical to that of our tangent. Let h — 0. Of
course, if h = 0 there is no secant. But if h got so close to 0 as doesn’t matter then there
would be a secant and hence a slope:

This f'(z) is the derivative of f(z). This gives the slope of the curve at every point on
the curve.
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In the Leibniz notation, y is equivalent to f(x). However, the notation for the derivative
of y is:

It must be understood that if y = f(x); then

and there is no notion of canceling the ds; it is just a notation. It is an illuminating one
because if the second graph of figure 1.4 is magnified about the secant:

d ay
- dx
X xthk

Figure 1.5: Leibniz notation for the derivative

If dy is associated with a small variation in y ~ f(z+ h) — f(2); and dz associated with
a small variation in = ~ h; then dy/dx makes sense.

Integration

What is the area of the shaded region under the curve f(x)?
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Start by subdividing the region into n strips Sy, s, ..., S, of equal width as Figure 1.6.

Figure 1.6:

The width of the interval [a, b] is b — a so the width of each of the n strips is

Approximate the ith strip S; by a rectangle with width Az and height f(z;), which is
the value of f at the right endpoint. Then the area of the ith rectangle is f(z;) Ax:

Fie)

/

fix)

S ¥

a AX b

The area of the original shaded region is approximated by the sum of these rectangles:

This approximation becomes better and better as the number of strips increases, that
is, as n — oco. Therefore the area of the shaded region is given by the limit of the sum of
the areas of approximating rectangles:
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Definition: The Definite Integral

If f(x) is a continuous function defined in [a,b] and z;, Az are as defined above, then the
definite integral of f from a to b is

So an integral is an infinite sum. Associate [ -dx ~ lim, o ». - Az.

Fundamental Theorem of Calculus

If f is a function with derivative f' then

Examples

1. BEvaluate

2
/ 32?2 dx
0

2. Fuvaluate



MATHG6037 16

T
/ —sinxz dx
0

3. Fuvaluate

Definition: The Indefinite Integral

If f(x) is a function and it derivative with respect to x is f’(z), then

where c is called the constant of integration.

The Indefinite Integral [ f(x) dx asks the questions:

Note the constant of integration. It’s inclusion is vital because if f(z) is a function with
derivative f'(z) then f(z) + c also has derivative f'(x) as:

Geometrically a curve f(x) with slope f’(x) has the same slope as a curve that is shifted
upwards; f(x)+c. Note that the constant of integration can be disregarded for the indefinite
integral. Suppose the integrand is f’(x) and the anti-derivative is f(x) + ¢. Then:

Finding the derivative of a function f at x is finding the slope of the tangent to the
curve at z. Integration meanwhile measures the area between two points © = a and x = b.
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The Fundamental Theorem of Calculus states however that differentiation and integration
are intimately related; that is given a function f:

i.e. differentiation and integration are essentially inverse processes.

Examples

Integrate 1-3:
1. f 3x%dx

2. [(1/x)dx

3. [—cosxdx
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4. Fvaluate:

/ 423 dx
0

Straight Integration

From the Fundamental Theorem of Calculus

[ F@yde= @)+

Thus:
f(x) [ f(z)
" (n# —1) f:ll +c
CoS T sinx + ¢
sinx —cosT +c
e* et +c
sec? tanx + ¢
% In|z|+c
Examples
Integrate:

1. [Vxdx

(1.1)

18
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2. [(1/2?)dx

Let a € R. Now

ax ax

dx

Example

FEuvaluate:

19
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Also because

d .

— sinnx = ncosnx , and
dx

d :
— cosnx = —nsinne
dx

Example

Integrate [ cos2xdx.

Also, let a > 0;

d1. .,z 1 1 1
n = -
dx a a al+2%2/a® a

Example

Fualuate:

1
1
/ dx
0 1+IE2
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Also

d . |z 1 1

sin”’ — = ————

dx a \/1-az%/a2a
Example
Integrate:

7=
x
1—a2

Properties of Integration
Proposition
Let f, g be integrable functions and k € R:
(a)
Ju@zg@ydo= [ 1@de [gla)as (12)

(b)
/kf(:v) dx = k/f(q:) dx , where k € R (1.3)
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The Substitution Method for Evaluating Integrals

[ g (@) iz = [ ) du (14)

where u = g(x)
Examples
Spot the patterns:

/2x2\/x3 + 1dx

/t(5 + 3t%)% dt

/x26x3 dx
/32\5/ 7T — 4s3ds

JR
3z x?
/x2 sec’(2® + 1) dx

/ sin® x cos x dx
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Examples

Evaluate 1-2:
1.

w/4
/ e goc? 1 d
0

V3
/ B
0 2 +1

23
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3. Integrate:

/

dx

V15 + 22 — 2

24



MATHG6037 25

LIATE

If we cannot see a g(z), ¢'(x) pattern we can use the LIATE rule. Choose u according to
the most complicated expression in the following hierarchy:

E

In general this works well.

Examples

1. Integrate:
2 nn2( 03
/x sec”(xz” + 1) dx
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2. Evaluate:

J

w2 /4
coS \/T I
N

26
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Exercises

1. Evaluate

() 1
/0 (20 + 5) da

/1 27 +5
- dx
0 T*+o5z+1

1
/ 6290-1—5 dl’
0

2. (a) The following integral could be found by expanding (1 — x*)5. Note however that
the derivative of (1 — x?) is —2x. By making a substitution, evaluate:

1
/ r(1 — 2’ de
0

(b) By noting that a™" = 1/a™, evaluate

(b)

()

2 dx
1 €°
correct to 3 decimal places.
3. It can be shown that for x > 1,
111

2 T x T

By integrating these functions between suitable values, show that

glog:c§2\/§—2

DO | —

4. Ewvaluate:

(a)

2 2
/ (x+1) d
1 2z

/\/7T_/2

0

(b)

x cos(x?) dx

/5/2 du
1 VE-2)(2+ )
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5. Let
et +e” et —e®
fla) = S and ge) =

Prove that f'(x) = g(x). Hence find
log1/2
| 2w

6. (a) Suppose that f(x) = ax®+bx+c. There is a process called completing the square
where we write:
az® + br +c = (v +p)* +q,

for some p,q € R. Complete the square of x> +4x+5. Now making a substitution
of the form u = (z + p), integrate

1
—d
/3:2+4x+5 o

/ 2r+5 d
— dx
2 +4x+5

7. By manipulating the right-hand side, show that

(b) Integrate the following:

1 B e’ e*
(e*+1)2 = er+1 (em+1)2
Hence find
/ dx
(e + 1)
8. Evaluate

3
/ 23: dx
o T¢+9
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1.2 Integration by Parts

Introduction

We should at this stage be aware of the sum, product, quotient and chain rules for differen-
tiation:

In all cases here u and v are understood to be u(z) and v(z) — functions of z. In theory,
because of the Fundamental Theorem of Calculus;

we should be able to integrate both sides of each of the above rules to generate a new
one for integration.

A Sum Rule for Integration

(1.5)

i.e. we may integrate term by term.

A Chain Rule for Integration

—(g(f(2))) = g'(f(2))f'(z) (1.6)
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Let u = f(x):

Of course this is more well known as the Substitution Rule — but really it’s a Chain
Rule for Integration.

Integration by Parts — A Product Rule for Integration
What about a Product or Quotient Rule for integration? Well first off a quotient rule

wouldn’t be much use: , ,
/vu —w (1.7)
)

02
But what about a Product Rule? Well

d dv du
%(ux) = u- + v (1.8)
Now instead of doing what we did above, notice that
dv d du

u% = %(ux) — v%

Now integrating with respect to x:

/udv:uv—/vdu (1.9)

This formula is known as the Integration by Parts formula. It will be very prominent
in our study of Laplace Transforms. In practise you will be confronted by an integral of the
form:

In terms of the notation, if f(z) is split into a product f(x) = g(z)h(z) then:

Now in terms of (1.9):
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In general, f(z) will be already ‘split” and the only issue will be the choice of u and the
choice of dv. Note first of all that once w is chosen, dv is just whatever is left. Note that
whatever we choose u to be, we will have no problem differentiating it to find du. To find v,
we must integrate dv. However, in general, integration is more difficult that differentiation.
Hence a general heuristic or strategy is to choose u to be the term that is harder to integrate.
Consider the following hierarchy:

E

This is a hierarchy of classes of functions in decreasing difficulty of integration. Hence there-
fore, if you choose u to be the first element in this hierarchy to be found in the integrand,

then automatically dv will be easier to integrate than du. This is known for obvious reasons
as the LIATE Rule.

Examples

1. Find

[—/wsinxdw
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2. Find

3. Find

I = /lnxda:

I:/t2etda:

32
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I = /exsinxdx

4. Find

If we combine the formula for integration by parts with the Fundamental Theorem of
Calculus:
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Example

Calculate

1
/ tan~'z dx
0

34



MATHG6037

Exercises

1. Find [ xcosxzdx and check your solution.
2. Find [ ze** dz and check your solution.
3. Bvaluate

w/2

/ x cos 2z dx
0

4. Fvaluate )

/ log x dx,

1
giving your answer in the form logp + q where p,q € Q.
5. Find [log2xdux.
6. Integrate fsinflxdx
7. Integrate [ xlogx dzx.
8. Integrate [ 0sec? 6 df.
9. FEvaluate )
1
/ i dx
0
10. Evaluate

4
/ Vi Intdt
1

35
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1.3 Partial Fractions

This chapter will serve two purposes. Firstly it will give us a an algebraic technique that
allows us to write a ‘fraction’ as a sum of (supposedly) simpler ‘fractions’ and as a corollary
it will give us another integration technique.

Adding Fractions
Let a,b,c,d € R such that b # 0, d # 0. Now

SalS]
alo

So we can see that we can write the sum any fractions with denominators b,d as a single
fraction with denominator bd. Now I ask the reverse question:

Given a fraction a/b can I write a/b as a sum of two fractions?

Let a, 8 € R such that b = af. Then:

SR
+

SIS
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Now compare:

So not only can be do it we can do it in an infinite number of ways!

Example

Write 1/12 as a sum of two simpler fractions.

Rational Functions
Definition

Any function of the form:

for a; € R, n € N is a polynomial. 1If a,, # 0 then p is said to be of degree n.

37
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Examples

Suppose that all a; € R with leading term non-zero:

1. p(z) = a1x + ap is a line or a linear polynomial.

Figure 1.7: Plots of a linear and a quadratic polynomial on the left. A plot of a cubic
polynomial on the right.

Take a general polynomial, say p(z). How can the roots of p be found?

p in general is a sum, not a product. However the following theorem gives us a scheme
to find the roots of p:
Theorem

Suppose a and b are numbers and
a.b=0.

Then either:

To use this however, we need to be able to write p as a product! To write a sum as a
product is to factorise. The below theorem gives a clue:

Theorem: Factor Theorem

A number k is a root of a polynomial p(x) if and only if (x — k) is a factor of p.

Proof
See http://irishjip.wordpress.com/2010/09/08 /an-inductive-proof-of-the-factor-theorem/ o
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Example

Let p(x) = 62° — 1122 + 62 — 1. Show that p(1) = 0. Hence solve

62° — 1122 +62—1=0

39
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For the moment suppress the restriction to real functions (z € R) and consider functions
defined on the complex numbers. It is a deep result in algebra and complex analysis that:

Theorem: Fundamental Theorem of Algebra

Every non-constant polynomial p of degree n can be written in the form

for some c € R, ay,as,--- € C

Remark

The a; here are the roots of f and this theorem proves that a polynomial of degree n has n
roots, some of which may be complex.

Theorem: Fundamental Theorem of Algebra for Real Polynomials

Fvery non-constant polynomial p of degree n can be written in the form

for some c € R, by, by, -- € R, ¢1,c9,--- € R.

Remark

We can break down every polynomial with real coefficients to a product of linear and
quadratic terms.

Definition

Suppose that p(x) and ¢(z) are polynomials. Any function of the form:

is called a rational function.

Examples
1.
r+5
?+ax—2
2.
x3+x
r—1
3.
2+ 2x—1

243 + 322 — 2%
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The remainder of this section will be concerned with writing rational functions as a sum
of simpler ‘fractions’ called partial fractions. To mirror the addition of a/b and ¢/d from
earlier on, consider:

r—1 x+2

That is example 1 above has partial fraction expansion:

z+5 B 2 1
2+r—2 -1 x+2

Now why the hell would be do this? The primary reason for this module is for doing Inverse
Laplace Transforms. Frequently rational functions will arise here and we will need to expand
them in order to apply this £7! operator. However for now we could consider the integral:

/fc_%dx
2 +x—2

So to integrate rational fractions it may be useful to express them in a partial fraction
form. To see how the method of partial fractions works in general, let’s consider a rational
function f:

where p and ¢ are polynomials.



MATHG6037

42

We will see that it will be possible to write f as a sum of simpler fractions provided the
degree of p is less than the degree of q. If it isn’t, we must first divide ¢ into p using long
division (same method as when we did the factor theorem example). When we’ve done this

we will end up with an expression of the form:

f=s(x)+—%
) q(x)
where s(x) is a polynomial and deg(r) < deg(q).
Examples
By dividing x — 1 into x® + x, write
3+

r—1
in the same form as (1.10).

Write the following in the same form as (1.10):

xt + 322 -2
2+ 1

(1.10)
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General Method for Partial Fractions
Let f(x) = p(x)/q(z) be a rational function.

1. Write f(z) in the same form as (1.10).

2. Factor ¢(x) as far as possible using the Factor Theorem for real polynomials.

3. To each factor of ¢(x) we associate a term in the partial fraction decomposition via the
following rule:

|

IT

I1I

IV

To each non-repeated linear factor of the form (az + b) (i.e. no other factor of
q(z) is a constant multiple of (ax + b)) there corresponds a partial fraction term
of the form:

Example: Suppose f(x) = p(x)/q(x), with deg(q) < deg(p), and q(z) = (x —
1)(2x — 1)(—x +2). What is the partial fraction expansion of f(x)?

To each linear factor of the form (az + b)" (i.e. a repeated linear factor of ¢(x))
there corresponds a sum of n partial fraction terms of the form:

Example: Suppose f(z) = p(x)/q(x), with deg(q) < deg(p), and q(z) = (x —
1)?(2x — 1)(—z + 2)®. What is the partial fraction expansion of f(z)?

To each non-repeated quadratic factor of q(z) of the form (az? + bx + ¢) (i.e. no
other factor of ¢(x) is a constant multiple of (ax? + bz + ¢)) there corresponds a
partial fraction term of the form:

Example: Suppose f(z) = p(x)/q(z), with deg(q) < deg(p), and q(z) = (x —
1)?(z* + z + 1)(22* + 3). What is the partial fraction expansion of f(x)?

To each quadratic factor of the form (az? + bz + ¢)" (i.e. a repeated linear factor
of ¢(x)) there corresponds a sum of n partial fraction terms of the form:
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Example: Suppose f(x) = p(x)/q(x), with deg(q) < deg(p), and q(z) = (x —
1)?(2z — 1)(22% + 3)%. What is the partial fraction expansion of f(x)?

4. Write the partial fraction expansion as a single fraction “f(z)”, and set it equal to
f(z). Compare the numerators of f(x), u(x); and the numerator of “f(z)”, v(x); by
setting them equal to each other:

Find the coefficients in the partial expansion using one of two methods:
(a) The coefficients of u(x) must equal those of v(z). Solve the resulting simultaneous
equations.

(b) If u(x) and v(x) agree on all points then f(z)="“f(x)”. Generate m simultaneous
equations in m variables by plugging in m different values xy,x»,...,x,, and
solving the equations:

Example: Let

Hence f(x) has partial expansion

Evaluate A, B using both methods above.
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Examples
1. Find the partial fraction expansion of

7

222 4+ Hx — 12

45
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2. Fuvaluate

61‘2 — 31’1

I

dr + 1) (22 + 1)

46
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3. Fuvaluate

Ik

dx

5 _ 2

47
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Exercises
1. Factorise the following polynomials: (i) x*> —4x — 5 (i1) x* — 2z (i) 152>+ — 6
2. Diwide each of the following: (1)22* —Tx —4+x —4 (i) 32° — 220* — 192 — 6 + 3x + 1
(iii) 223 4+ 2% — 160 — 15+ 20 +5 () 8x® +27+2x+3 (v) 203 —T2? —Tx —10+2x —5
(vi) 623 — 132% + 2z + 1

3. Search for a root of the following cubics and hence use the Factor Theorem to factorise:
(i) 22 + 2 — 8z — 4 (ii) 2* + 4a* + x — 6 (iii) 323 — 11z* + 2 + 15

4. Write each as a single fraction:

4dr—3 x-—3
5) + 3
1 2
r—1 22+3
T 2
r—1 "z
1 3
t4+1 2z—1

5. Write out the partial fraction expansion of the following. Do not evaluate coefficients.

3 —1
x(z — 2)?
2+

-4 r—1
z?—2x—3
(x —1)(2% + 22+ 2)

6. Write out the partial fraction expansion of the following. Do evaluate coefficients.

3 — a2 — 2
1
3 + 312
1
(z +2)?

/x21_4d:z:
et

S5r — 2
/x2—4d$

7. Fvaluate
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1.4 Multivariable Calculus

Functions of Several Variables: Surfaces

Many equations in engineering, physics and mathematics tie together more than two vari-
ables. For example Ohm’s Law (V' = IR) and the equation for an ideal gas, PV = nRT,
which gives the relationship between pressure (P), volume (V') and temperature (7). If we
vary any two of these then the behaviour of the third can be calculated:

How P varies as we change T and V is easy to see from the above, but we want to adapt
the tools of one-variable calculus to help us investigate functions of more than one variable.
For the most part we shall concentrate on functions of two variables such as z = 2% + y* or
z = xsin(y + €”). Graphically z = f(x,y) describes a surface in 3D space — varying the -
and y-coordinates gives the z-coordinate, producing the surface:

133

(za.u0)

As an example, consider the function z = 2% + 2. If we choose a positive value for z,
for example z = 4, then the points (z,y) that can give rise to this value are those satisfying
22 +y? = 4 = 22, ie. those on the circle centred on the origin of radius 2. Note that at
(z,y) = (0,0), z =0, but if # # 0 or y # 0, then 2> > 0 or y? > 0, and it follows that z > 0.
Thus the minimum value taken by this function is z = 0, at the origin:
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Three examples. Which are which?

fla,y) = (@ +3y")e ™V

(2,7) sin x siny
€T = ———--
g\, y Y

h(z,y) =sinz + siny

50
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Partial Derivatives

x 18 into the page

Figure 1.8: What is the rate of change in z as I keep y constant

52
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If we were to look at this from side on:

bt

Figure 1.9: When y is a constant z can be considered a function of x only.

In general we have that z = f(z,y); but if y = b is fixed (constant):

We can view f(z,b) as a function of x alone. Now what is the rate of change of a
single-variable function with respect to x:

Which is also the slope of the tangent to f at x. Hence the rate of change of f(z,y) with
respect to x at x = a when y is fixed at y = b is the slope of the surface in the z-direction.

Example

Let z = f(x,y) = 2® + 2%y — 2y3. What is the rate of change of z when y =27

Hence the rate of change of z with respect to x, when y is fixed at y = b, is given by:
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More generally, we fix y = y and define

as the partial derivative of f with respect to x.
We define the partial derivative of f with respect to y in exactly the same way.

Example
What are the partial derivatives of
2z =a® + xy’® — 623y + ¢t

with respect to x and y respectively?

There are many alternative notations for partial derivatives. For instance, instead of %
we can write f, or fi. In fact,

0 0
a—i = a—; Ef:p(xay) Efl(x’y)
of _o:

3y = 3y = fy(z,y) = folz,v)

To compute partial derivatives, all we have to do is remember that the partial derivative of
a function with respect to x is the same as the ordinary derivative of the function g of a
single variable that we get by keeping y fixed. Thus we have the following:

1. To find %, regard y as a constant and differentiate f(z,y) with respect to x.

Example

If f(z,y) =4 —2® — 2y, find f.(1,1) and f,(1,1) and interpret these numbers as slopes.
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Figure 1.10: f,(1,1) and f,(1,1) are the slopes of the tangents to (1,1) in the = and y
directions respectively.

Using this technique we can make use of known results from one-variable theory such
as the product, quotient and chain rules (Careful — the Chain rule only works if we are
differentiating with respect to one of the variables — we may have more to say on this in
the next section).

Examples

Find the partial derivative with respect to y of the function

f(z,y) = sin(zy)e™™

Compute fi and fy when z = x?y + 3z sin(x — 2y).
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Functions of More Variables

We can extend the notion of partial derivatives to functions of any (finite number) of variables
in a natural way. For example if w = sin(z + y) + z%e® then:

Higher Order Derivatives

Suppose z = xsiny + z*y. Then

Both of these partial derivatives are again functions of x and y, so we can differentiate
both of them, either with respect to xz, or with respect to y. This gives us a total of four
second order partial derivatives:

Remark: The mixed partial derivatives in this case are equal:

9%z 0%z

Oydx  0x0y’

This is not something special about our particular example — it will be true for all reasonably
behaved functions. This is the symmetry of second derivatives. Note the notation:

0
0xdy

= fys etc. (1.11)
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Examples
Compute
0z Oz 0z

g g il
8x’8y’an Ox?

2 .
when z = x3y + e*Y" + ysin .

Compute all the second order partial derivatives of the function f(x,y) = sin(x + xy).
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Exercises
1. Find all the first order derivatives of the following functions:
(@) fz,y) = 2® — day® +y* (i1) f(z,y) = 2%’ — 4y
(i17) f(z,y) = 2*sinxy — 3y* (iv) f(z,y,2) = 3zsiny + 423y*2
2. Find the indicated partial derivatives: (i) f(z,y) = 2* — 4xy* + 3y: fux, fyus Joy

(H) f(xay) =zt — 3:[}2’!/32—1- oy: fx:m f:ry> fzyy
(111) f(xvywz) = e — % +xz siny: facam fyy; fyyzz

o8
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1.5 Applications to Error Analysis

Differentials

For a differentiable function y = f(z) of a single variable x, we define the differential ‘dz’
to be an independent variable; that is, dx can be given the value of any real number. The
differential of y is then defined by:

Figure 1.11: The differential estimates the actual change in y, Ay, due to a change in x:
x — Ax. For small changes in x, the differential is approximately equal to the actual change
iny: dy =~ Ay.

For a differentiable function of two variables z = f(z,y), we define the differentials dz
and dy to be independent variables and the differential dz estimates the change in z when z
changes to x + Az and y changes to y + Ay:

Example

If 2z = f(z,y) = 2% + 3zy — v, find the differential dz. If x changes from 2 to 2.05 and y
changes from 3 to 2.96, compute the values of dz and Az (the actual change in z).
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Example

The pressure, volume and temperature of a mole of an ideal gas are related by the equation
PV = 8.31T, where P s measured in kilopascals, V' in litres and T in kelvins. Use differ-
entials to find the approximate change in the pressure if the volume increases from 12 L to
12.8 L and the temperature decreases from 310 K to 305 K.
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Propagation of Errors

Suppose we have a physical property P related to two other properties A and B by:

Now suppose we measure A and B and record values Ay and By with associated errors
AA and AB. We can now keep track of the errors in P due to errors in A and B by knowing
“how much P will change due to small changes in A (and/ or B) between A — AA and
A+ AA (and B— AB and B+ AB)”. The differential of P gives an estimate of this:

Now we don’t want errors to cancel each other out so we write:

Example

The base radius and height of a right circular cone are measured as 10 cm and 25 cm, respec-
tively, with a possible error in measurement of as much as 0.1 ¢cm in each. Use differentials
to estimate the maximum error in the calculated volume of the cone.
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This procedure generalises in the obvious way.

Example

The dimensions of a rectangular box are measured to be 75 cm, 60 cm, and 40 cm, and each
measurement is correct within 0.2 cm. Use differentials to estimate the largest possible error
when the volume of the box is calculated from these measurements.
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Exercises

1.

Use differentials to estimate the amount of tin in a closed tin closed tin can with
diameter 8 cm and height 12 cm if the can is 0.04 cm thick.

Use differentials to estimate the amount of metal in a closed cylindrical can that is 10
cm high and 4 cm s diameter if the metal in the wall is 0.05 cm thick and the metal
in the top and bottom is 0.1 cm thick.

If R 1s the total resistance of three resistors, connected in parallel, with the resistances

R, Ry and Rs, then
1 1 1 1

R R B R
If the resistances are measured as Ry = 25 Q, Ry = 40 Q and R3 = 50 2, with

possible errors of 5% in each case, estimate the mazximum error in the calculated value
of R.

The moment of inertia of a body about an azis is given by I = kbD? where k is a
constant and B and D are the dimensions of the body. If B and D are measured as
2 m and 0.8 m respectively, and the measurement errors are 10 cm in B and 8 mm
in D, determine the error in the calculated value of the moment of inertia using the
measured values, in terms of k.

The volume, V', of a liquid of viscosity coefficient n delivered after a time t when passed
through a tube of length | and diameter d by a pressure p is given by

B pd*t

C 1281

If the errors in V., p and | are 1%, 2% and 3% respectively, determine the error in 1.
HINT: If the error in A is ©% then the error is xAg/100 when A = A,.



Chapter 2

Numerical Methods

2.0.1 Outline of Chapter
e Solving equations using the Bisection Method and the Newton-Raphson Method

e Approximate definite integrals using the Midpoint, Trapezoidal and Simpson’s Rules.
e Euler’'s Method

64
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2.1 Root Approximation using the Bisection and Newton-
Raphson Methods

Suppose that you want to solve an equation such as
8r(1+2)° —(1+2)P +1=0

How would you solve such an equation?

For the quadratic equation ax? + bz + ¢ = 0 there is a well-known formula for the roots.
For third- and forth- degree equations there are also formulas for the roots, but they are
extremely complicated. If f is a polynomial of degree 5 or higher, there is no such formula.
Likewise, there is no formula that will enable us to find solutions to so-called transcendental
equations such as:

This section will outline two approximation methods — first some theory.

Continuous Functions and The Intermediate Value Theorem

Consider a function with continuous graph:

Figure 2.1: A function with a continuous graph can be drawn without lifting the pen off the
page.

Mathematicians can abstract this class of function but for MATH6037 we define a con-
tinuous function as follows:
Definition

Let I C R be an interval and suppose that f : I — R, 2 — f(x). Then we say that f is
continuous if the graph of f is continuous.
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Examples of Continuous Functions

The following functions are all continuous — where defined!

Theorem

Suppose that f and g are continuous functions and k € R. Then the following are also
continuous functions
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Now consider the following situation:

Figure 2.2: Suppose a continuous function f changes sign over an interval (a,b) — then f
must cut the x-axis at some point between a and b — that is f must have a root between a

and b.

Intermediate Value Theorem: M ATHG6037 Version

Examples

Use the Intermediate Value Theorem to show that the equation x® — 42> + 2+ 3 = 0 has a
root between 1 and 2.

Use the Intermediate Value Theorem to show that the equation (cos z)x®+5sin*x—4 = 0
has a oot between 0 and 2.
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Apply the Intermediate Value Theorem to find an interval in which x*> +x = 1 has a
T00%.

Apply the Intermediate Value Theorem to find an interval in which 3sinx + cos®> z = 2
has a root.

We use this theorem to estimate the location of roots. The following two methods then
zoom in on the root. The first is a repeated application of the Intermediate Value Theorem
— the second uses tangents to the curve.
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The Bisection Method

Tthe first step is to take the equation, bring all the terms over to left-hand side and re-
write the equation as f(z) = 0, where f(z) is the terms on the left-hand side. Solutions to
f(x) = 0 are known as roots of the function.

Once this is done, the second step is to evaluate the function f at various points (usually
x=0,1,2,3,...,—1,—2) until we find that the sign changes — e.g. if f is continuous and
f(2) =1 and f(3) = —4 then there is a root between 2 and 3, in the interval (2, 3):

Figure 2.3: If f is continuous and changes sign between 2 and 3, then there is a root between
2 and 3. Next we evaluate f(2.5) to see is the root in (2,2.5) or (2.5, 3)

Once we have found an interval (a,b) in which we know there is a root — we evaluate
at the midpoint of (a,b) to see whether there is a root in the left or the right of (a,b). We
can keep continuing this process until we are as close to the root as we choose.

Figure 2.4: We can iterate this process to find smaller and smaller intervals in which there
must be a root.
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Examples

Show that the polynomial p(x) = x* — 223 — 22% + 1 has a root r satisfying 0 < r < 2 and
use four iterations of the bisection method to find an approximation of r.

Find an interval of length less than 0.05 which contains a root of sinx = x.
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The Newton-Raphson Method

Another such method is the Newton-Raphson method. As before, the first step is to take the
equation, bring all the terms over to left-hand side and re-write the equation as f(z) = 0,
where f(z) is the terms on the left-hand side. Solutions to f(z) = 0 are known as roots of
the function. For example, finding the solutions to the equation

is equivalent to finding the roots of the function:

Using a quick application of the Intermediate Value Theorem, we find an interval (a,b)
on which f(z) has a root. Now as a rough approximation to the root, we can choose any z
between a and b (usually (a + 0)/2 - the midpoint). Now what we do is the following:

Figure 2.5: We use the tangent to the curve at xg to get a better approximation to the root
r. Not that at all times we will require that f'(zq) # 0.

To find a formula for x; in terms of zy, we use the fact that the slope of the tangent
to the curve at zy is f/'(zg). A point on the tangent is given by (xg, f(x¢)) and using the
formula for the equation of a line:

Now, the equation of the line is like a membership card for the line — if a point satisfies
the equation it’s on the line, otherwise it’s not. Now the point (z1,0) is certainly on the line
so it satisfies the equation:
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We use 77 as a first approximation to r. Next we repeat this procedure with zq replaced
by x1, using the tangent line at (x1, f(x1)):

Figure 2.6: We use the tangent to the curve at z; to get an even better approximation to
the root r, x».

This gives a second approximation:

If we keep repeating this procedure, we obtain a sequence of approximations x1, rs, x3, . . . .
In general, if the nth approximation is x,, (and f’(x,) # 0), then the next approximation is
given by:

If the sequence z,, gets closer and closer to r as n gets large, we say that the sequence
converges to r and we write:

Remarks

Although the sequence of successive approximations converges in a great many cases, in
certain circumstances the sequence may not converge. However, except in pathological ex-
amples which we will not encounter, if the sequence of approximations converges, it will do
so to a root.

Suppose we want to achieve a given accuracy, say to eight decimal places, using the Newton-
Raphson Method. How do we know when to stop? A good rule of thumb, backed up by a
theorem, is that we can stop if two successive approximations x,, and z,,; agree to eight
decimal places.

Notice that the procedure in going from =z, to x,,; is the same. It is called an iterative
process and is particularly convenient for use with a computer.
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Examples

Starting with vo = 2, find the second approzimation to the root of the equation x> —2x—5 = 0.

Use Newton’s method to find /2 correct to eight decimal places.
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Find, correct to six decimal places, the root of the equation cosx = x.

74
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Exercises

1.

2.

If f(x) = 2® — 2% + x, show that there is a number ¢ such that f(c) = 10.

Use the Intermediate Value Theorem to prove that there is positive number ¢ such that
c® = 2 (this proves existence of the number \/2).

Use the Intermediate Value Theorem to show that there is a root of the given equation
in the specified interval (i) z* +x—3 =0, (1,2) (ii) Yz =1—=z, (0,2) (iii) cosz = =,
(0,1) (iv) tanx = 2z, (0,1.4)

Use the Intermediate Value Theorem to locate an interval of length 1 in which each of
the following equations have a roots (note that in general a polynomial of degree n has
n roots — I just want ye to find a location of one of them.).
(i) 28 +2x —4 = 0.
(ii) 2°+2=0.
(iii) x* = 30.
(w) z* + 2 —4=0.
(v) 2* =1+ .
(vi) Vo + 3 =12
(vit) x° —x* =523 — 2 + 4 +3=0.
(viii) 3sin(z?) = 2x.
Now use the Bisection Method to find intervals of length less than 0.1 (this will require
four iterations of the Bisection Method — after four iterations the interval on which
we know there is a root will have length 1/2* =1/16 < 0.1)

Now use the Newton Method to find a root of (i) to 1 decimal place, (ii) to two decimal
places (i1i) to three decimals... (viii) to 8 decimal places.

Use the Newton-Raphson Method to find a root of e* = x to five decimal places.
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2.2 Approximate Definite Integrals using the Midpoint,
Trapezoidal and Simpson’s Rules

There are two situations in which it is impossible to find the exact value of of a definite
integral.

The first situation arises from the fact that in order to evaluate a definite integral fab f(z)dx
using the Fundamental Theorem of Calculus we need to know an anti-derivative of f. Some-
times, however, it is difficult, or even impossible to find an antiderivative. For example, it is
impossible to evaluate the following exactly:

1 1
/ e dr , and / V1+23de
0 -1

The second situation arises when the function is determined from a scientific experiment
through instrument readings or collected data.

In both cases we need to find approximate values of definite integrals. We know that a
definite integral represents the area under a curve so we use rectangles the approximate the
area under the curve.

Figure 2.7: Suppose we want to integrate the function f(z) over the interval (a,b). We
can approximate the integral by a rectangle of width (b — a) and height f((b —a)/2). This
corresponds to the Midpoint Rule.
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Figure 2.8: We could also approximate the integral by a rectangle of width (b—a) and height
f(a). This corresponds to the Left Endpoint Rule.

Figure 2.9: We could also approximate the integral by a rectangle of width (b—a) and height
f(b). This corresponds to the Right Endpoint Rule Rule.
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Figure 2.10: We could also approximate the integral by a trapezoid of width (b — a) and
heights f(a), f(b). This corresponds to the Trapezoidal Rule. As an exercise, show that the
Trapezoidal Rule gives the average of the Left- and Right-Endpoint Rules.

Figure 2.11: Finally, we could approximate the integral by the area under a quadratic
function passing through the points {(a, f(a)), ((b — a)/2, f((b — a)/2)), (b, f(b))}. This
corresponds to Simpson’s Rule.
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What we can do is first divide the integral into n “rectangles” and use one of the methods
outlined above to approximate each of the rectangles separately.

Figure 2.12: The idea of approximate integration is to break up the area into manageable
chunks which we can then approximate separately.

The Midpoint Rule

Consider, once again the problem of finding the area underneath the curve of a function,
between two points a and b:

Figure 2.13: We can approximate the area under the curve by rectangles. In particular, if
we choose the height of the rectangles to be the value of the function at the midpoint of the
width, we have an approximation known as the Midpoint Rule.

Now each of the rectangles S; has area width by height:

5 = ) =" 2.1)

n

Hence we can approximate the area by adding them up: A~ S; + Sy +---+ 5,.
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Midpoint Rule

[ e~ Y a)de = Aalfa) + fla) 4o+ Sl

where
Ax = b-a
n
and
T; = %(%_1 + ;) = midpoint of [z;_1, x;].
Example

Use the Midpoint Rule with n =5 to approzimate

2
1
/—dx.

LT

Compare this with the actual value of the integral.
The midpoints of the five subintervals are 1.1,1.3,1.5,1.7,1.9 so the Midpoint Rule gives:

/12 Lo~ My = Ax[f(11) + F(13) + £(L5) + F(1.7T) + F(1.9)
1
.3

e
_11+ +1+1+1
S 5\1.1 1

~ 0.691908.

1.5 1.7 1.9

Now the actual value of the integral:
>1
/ —dx = [log|z|]7 = log2 —log 1 = log 2 =~ 0.693147.
LT
The difference between them is given by:

b
Ey = / f(x)dx — Ms| ~ 0.00123918,




MATHG6037 81

The Trapezoidal Rule

Consider, once again the problem of finding the area underneath the curve of a function,
between two points a and b:

Figure 2.14: We can approximate the area under the curve by trapezoids. Remember all of
the subintervals are length Az = (b —a)/n.

Now each of the trapezoids S; has area width by height for the rectangular part, plus
half the base by the height for the triangular ‘hat’, hence!:

1
T = fzim) Az + SAz(f(2i) - f(@i-1))
1
= §A$[f($i—1) + ().
Hence we can approximate the area by adding them up:

[ #a)dn s G [(Fa0) + £@0) + (o) + S+ (Flaas) + £

= S04 (a0) + 2 (1) + 20 (22) -+ 2f (tacr) + J)]

Trapezoidal Rule

b
[ #@)de e S )+ 260) 2 ) 4 2 a) + F )

where ;
Ap = — ¢

n
and

T = E(xi_l + Iz) = midpoint of [272‘—17%‘]'

las an exercise show that this calculation is the same if f(z;) > f(z;—1).
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Example

Use the Trapezoidal Rule with n =5 to approximate

2
1
/—d;z:.

|

Compare this with the actual value of the integral.
With n =5, and b — a = 1, we have Ax = 1/5 and so the Trapezoidal Rule gives:

/12 i~y = 17/5[f(1) +2£(1.2) + 2f(1.4) + 2£(1.6) + 2£(1.8) + £(2)]

i
_11+2+2+2+2+1
S 10\1 1.2 14 16 18 2

~ 0.695635.

Now the actual value of the integral:
1
/ —dx = [log|z]]] =log2 —log 1 = log 2 ~ 0.693147.
LT
The difference between them is given by:

b
Ep = / F(x)dx — Ts| ~ 0.00248782.

Simpson’s Rule

Another rule for approximating definite integrals is by using quadratic functions instead of
straightline segments to approximate a curve:

Figure 2.15: We can approximate the area under the curve by the area under a quadratic.
Remember all of the subintervals are length Az = (b — a)/n and in this case we actually
have an even number of subintervals.
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If we follow this analysis carefully we can show:

Simpson’s Rule

_Ax

/f(ii)dl’%Sn — [f (o) +4f (1) +2f (w2) +4f (w3) &+ - +2f (@n-2) +4f (20-1) + f (wn)]

where n is even and Az = (b —a)/n.

Error Analysis
Error Bounds for the Trapezoidal and Midpoint Rules

Suppose K = maxgciqp f"(x). If Exoand Ep are the errors in the Midpoint and Trapezoidal
Rules:

K(b—a)?
Fyl < — 2.2
Bul < 20 (2.9
K(—a)?
Erl < ——— 2.

Examples

Give an upper bound for the error involved when we approximate fol e dx by M.
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How large should we take n to ensure that the Trapezoidal and Midpoint Rule approzi-
mations to ff %dac 18 accurate to within 0.0001.
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Error Bound for Simpson’s Rule
Suppose that K = max,coy | (x)|. If Es is the error in using Simpson’s Rule, then

K(b—a)®

Ed <
|Bs| < 180n4

(2.4)

Examples

Give an upper bound for the error involved when we approximate fol e dx by Sip-

How large should we take n to ensure that the Simpson Rule approximation to ff % dx
1s accurate to within 0.0001.
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Exercises

1.

FEstimate fol cos(x?) dz using (a) the Trapezoidal Rule and (b) the Midpoint Rule, each
with n = 4.

Use (a) the Midpoint Rule and (b) Simpson’s Rule to approzimate to siz decimal places.
/ ?sinzdr, n=8.
0

1
/ e V¥dz, n=6.
0

Integrate the first integral by parts and compare these approximate values with the real
value.

Use (a) the Trapezoidal Rule, (b) the Midpoint Rule and (c) Simpson’s Rule to approz-
imate the given integral with the specified value of n (Round to siz decimal places).

4
/‘M1+nggn:8
0

4
/ Vrsinazdr, n=8.
0

31
dy, n = 6.
A L+y°

. Find the approzimations Ty and Ms for fol cos(x?) dx. Estimate the errors involved in

the approximations. How large do we have to choose n so that the approximations T,
and M, are accurate to within 0.00001 7

Find the approzimations Ty and Sig for fol e* dx and the corresponding errors Er and
Es. Compare the actual errors (in comparison to the true value of the integral) with
error estimates Er and Eg. How large should n be to guarantee that the approximations
Tn and M, are accurate to 0.00001 ¢

How large should n be to guarantee that the Stmpson’s Rule approzimation to fol e us
accurate to within 0.00001 ¢

* Show that if p is a polynomial of degree 3 or lower, then Simpson’s Rule gives the
ezact value of fabp(a:) d.
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2.3 FEuler’s Method
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Chapter 3

Introduction to Laplace Transforms

3.0.1 Outline of Chapter

e Definition to transform

e Determining the Laplace transform of basic functions
e Development of rules

e First shift theorem

e Transform of a derivative

e Inverse transforms

e Applications to solving Differential Equations

e Applications to include the Damped Harmonic Oscillator
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3.1 Definition to transform
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3.2 The Laplace transform of basic functions
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3.3 Properties of the Laplace Transform
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3.4 Inverse transforms
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3.5 Differential Equations
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3.6 The Damped Harmonic Oscillator
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