
MS2001 Summer 2011 Solutions

Question 1

(a) Let x ∈ R be a real number such that x > 1 and let n ∈ N be a natural number
such that n ≥ 2. Using the properties of the inequality relation, or induction, prove
carefully that

xn > x.

(b) Use the Calculus of Limits to evaluate:

lim
x→1

√
x+ 8− 3

1− x

(c) Let f : R → R be the function defined by:

f(x) = (
√
x2 + 1 + sinx)50

Consider the statement:

The function f(x) is differentiable on R.

Is this statement true or false? Give reasons for you answer. Please find f ′(x) where
f is differentiable.

(d) A cylinder is to be made such that the sum of its radius r, and its height, h, is 6 cm.
Find, in terms of π, the maximum possible volume of such a cylindar.

Solution

(a) Direct Method: By assumption, x > 1. We can multiply both sides by x as x > 0
(If a, b, c ∈ R and c > 0 then a > b implies ca > cb [2 — Including Use]). That is
we have

x2 > x.

Now was can multiply the LHS by x and the RHS by 1 (If a, b, c, d ∈ R, a > b > 0 and
c > d > 0, then ac > bd [2 — Including Use]). Hence

x3 > x

⇒ x · · ·x︸ ︷︷ ︸
repeat until n ‘x’s.

> x [1]

⇒ xn > x

•
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Inductive Method: Let P (n) be the proposition that if x > 1 and n ∈ N, that
xn > x.
Consider P (2) [1]. Is x2 > x? Well x2−x = x(x−1). Clearly x > 0 and x > 1 implies
x− 1 > 0. Hence x(x− 1) is the product of positive real numbers so is positive:

x2 − x > 0,

⇒ x2 > x;

that is P (2) is true [1]1.
Assume that P (k) is true [1]:

xk > x.

Consider P (k + 1). Is xk+1 > x [1]? Consider xk+1 − x = x(xk − 1) [1]. Once again
x > 0 and by the inductive hypothesis, xk > x > 1 and hence xk > 1. That means
xk − 1 > 0 and thus xk+1 − x is a product of positive terms and hence positive. That
is

xk+1 − x > 0,

⇒ xk+1 > x [1]

Hence by the Axiom of Induction the statement P (n) is true for all n ∈ N •

(b) Firstly plugging in x = 1 results in 0/0. Mutliplying by the conjugate of the numerator:

√
x+ 8− 3

1− x
=

√
x+ 8− 3

1− x
×
(√

x+ 8 + 3√
x+ 8 + 3

)
[2],

=
(x+ 8)− 9

(1− x)(
√
x+ 8 + 3)

= − (x− 1)

(x− 1)(
√
x+ 8 + 3)

[2],

= − 1√
x+ 8 + 3

,

if x ̸= 1. Hence

lim
x→1

√
x+ 8− 3

1− x
= lim

x→1

(
− 1√

x+ 8 + 3

)
= −1

6
[2].

(c) This statement is true [1/2]. sin x is differentiable [1/2]2.
√
x is differentiable for

x > 0 [1/2]. x2 + 1 > 0 for all x as x2 ≥ 0 ⇒ x2 > −1 ⇒ x2 + 1 > 0 [1/2]. Moreover
x2+1 is differentiable as it is a polynomial. By the Chain Rule

√
x2 + 1 is differentiable

[1/2]. By the Sum Rule
√
x2 + 1+ sinx is differentiable [1/2]. x50 is differentiable as

1Less than three people proved the base case P (2). You can’t just say “x2 > x true” — you must prove
it. This is one of many ways of proving it.

2if you say differentiable it means differentiable everywhere
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x50 is a polynomial [1/2]. By the Chain Rule f(x) is differentiable [1/2].

f ′(x) = 50(
√
x2 + 1 + sinx)49

[
d

dx
[(x2 + 1)1/2 + sin x]

]
[1]

= 50(
√
x2 + 1 + sinx)49

[
1

2
(x2 + 1)−1/2.(2x) + cosx

]
[1]

= 50(
√
x2 + 1 + sinx)49

[
x√

x2 + 1
+ cosx

]
[1]

(d) The volume of a cylinder is given by

V (r, h) = πr2h. (1)

From the question we a know that r+ h = 6 that is h = 6− r [1] so that we can write
the volume as a function of a r alone:

V (r) = πr2(6− r) = 6πr2 − πr3 [1]. (2)

As this function is defined on the closed interval [0, 6], we can analyse this function
using the Closed Interval Method3. This theroem states that the absolute extrema
of a continuous function are found at the critical points. The critical points are the
endpoints, the stationary points and where the function is not differentiable. Clearly
r = 0 and r = 6 are critical points. Next we find points where the derivative equals
zero:

dV

dr
= 12πr − 3πr2

?
= 0 [1];

⇒ 3πr(4− r) = 0,

That is r = 0 or r = 4 [1]. As V (r) is a polynomial it is differentiable everywhere so
the critical points are r = 0, 4, 6.

V (0) = π(0)2(6) = 0π cm3

V (4) = π(4)2(2) = 32π cm3

V (6) = π(6)2(0) = 0π cm3 [1]

Hence the maximum possible volume is 32π cm3 [1].

Question 2

(a) Using the Closed Interval Method or otherwise, find a positive upper bound M ∈ R
such that,

|x2 − 7x+ 4| < M.

for x ∈ [2, 4].

(b) Hence use the ε− δ definition of a limit to prove that:

lim
x→3

(x3 − 10x2 + 25x− 6) = 6.

3in fact we can use the First and Second Derivative Tests also if we’re careful about the domain of V (r)
— namely (0, 6) in reality.
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Solution

(a) Closed Interval Method: Let f(x) := x2 − 7x + 4 [1]. As a polynomial, f is
continuous and hence satisfies the hypothesis of the Closed Interval Method on the
closed interval [2, 4]. That is the absolute extrema of f occur at the critical points of
f . The critical points are the endpoints, the points where f ′ = 0 and the points where
f ′ is undefined [3]. As a polynomial, f is differentiable so the only critical points are
x = 2, 4 and where f ′ = 0.

f ′(x) = 2x− 7
?
= 0,

⇒ 2x = 7,

⇒ x =
7

2
[2].

Now

f(2) = 4− 14 + 4 = −6 [1],

f(4) = 16− 28 + 4 = −8 [1],

f(7/2) =
49

4
− 49

2
+ 4 = −33

4
[1].

Hence we can say that |x2 − 7x+ 4| ≤ 33/4 < 9 =: M , for all x ∈ [2, 4] [1].

Using Inequalities: Using the triangle inequality and the fact that |xy| = |x||y|:

|x2 − 7x+ 4| ≤ |x2|+ | − 7x|+ |4| [4],

≤ |x|2 + 7|x|+ 4 [2],

≤ 16 + 28 + 4 = 48 [2],

Hence we can say that |x2 − 7x+ 4| ≤ 48 < 49 =: M [2].

(b) Let g(x) = x3 − 10x2 + 25x− 6 and consider

|f(x)− 6| = |(x3 − 10x2 + 25x− 6)− 6|,
= |x3 − 10x2 + 25x− 12| [1].

By inspection g(3) = 0 [1] hence by the Factor Theorem (x− 3) is a root of g(x):

x2 −7x +4
x− 3 | x3 −10x2 +25x −12

x3 −3x2

−7x2 +25x
−7x2 +21x

4x −12
4x −12

0 .

[2]

Hence (using either M = 9, 49 or similar)

|g(x)− 6| = |(x2 − 7x+ 4)(x− 3)|,
≤ |x2 − 7x+ 4||x− 3| [1],

< M |x− 3| [3].
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Suppose that ε > 0 [2]. Then if we choose δ := ε/M and 0 < |x− 3| < ε/M [3]:

|g(x)− 6| < M |x− 3| < M · ε

M
< ε [2].

i.e.
lim
x→3

(x3 − 10x2 + 25x− 6) = 6.

•

Question 3

(a) Let a ∈ R and consider the function f : R → R defined by:

f(x) =

{
|x− a| if x < 0
x− a if x ≥ 0

.

For what value(s) of a is f continuous?
Suppose a = 1. Is f differentiable at x = 0? Justify your answer.

(b) The Folium of Descartes is a plane curve with the equation

x3 + y3 − 3xy = 0

It passes through the origin, has a single loop, and has two branches that are asymptotic
to the straight line y = −x − a. The Folium of Descartes has a horizontal tangent at
the origin. Find the x-coordinate of the other point where it has a horizontal tangent.

Solution

(a) Away from 0, f is continuous [1]. For x < 0, f(x) is the composition of the continuous
functions | · | and x − a [1]; and for x > 0, f(x) is a polynomial. Hence we examine
the limit as x → 0.

lim
x→0−

f(x) = lim
x→0−

|x− a| = | − a| = |a| [2],

lim
x→0+

f(x) = lim
x→0+

(x− a) = −a [2].

So for f to be continuous we require that

|a| = −a [2]. (3)

The only real numbers that satisfy these conditions are zero and the negative numbers.
Hence f is continuous for a ∈ (−∞, 0] [2].

No it is not. If a = 1 then f is not continuous at 0. Not continuous implies not
differentiable [3].

(b) For a horizontal tangent we must have

dy

dx
= 0 [2]. (4)
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Differentiating across with respect to x:

d

dx
(x3 + [y(x)]3 − 3x[y(x)]) =

d

dx
0 [2],

⇒ 3x2 + 3y2
dy

dx
− 3x

dy

dx
− 3y = 0,

⇒ dy

dx
(3y2 − 3x) = 3y − 3x2 [1],

⇒ dy

dx
=

3y − 3x2

3y2 − 3x
[1].

We know that a/b = 0 ⇒ a = 0. Hence we require

3y − 3x2 = 0 ⇒ y = x2 [1].

To see which points on the curve satisfy this condition, substitute into the equation of
the curve:

x3 + (x2)3 − 3x(x2) = 0 [1],

⇒ x3 + x6 − 3x3 = 0,

⇒ x6 − 2x3 = 0,

⇒ x3(x3 − 2) = 0 [1].

Hence we either have x3 = 0 or x3 − 2 = 0. The first of these refers to the origin hence
we require:

x3 − 2 = 0,

⇒ x3 = 2,

⇒ x =
3
√
2 [2].

Question 4

(a) State Rolle’s Theorem.

(b) Suppose that f : R → R and g : R → R are continuous and differentiable. Prove that
if there exist distinct points x1, x2 ∈ R with

f(x1) = g(x1) , and f(x2) = g(x2),

then there exists a point c ∈ (x1, x2) such that the tangent line to f(x) at c is parallel
to the tangent line to g(x) at c.
[HINT: Consider the function h(x) := f(x)− g(x).]

(c) For a, b, c ∈ R and a ̸= 0, the function

p(x) = ax2 + bx+ c

is continuous and differentiable and so satisfies the hypothesis of the the Mean Value
Theorem on any (bounded) closed interval. Verify the Mean Value Theorem for p(x)
on the closed interval [0, 1].
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Solution

(a) If4 f : [a, b] → R is continuous on [a, b] [1], differentiable on (a, b) [1] and
f(a) = f(b) [1], then there exists a c ∈ (a, b) [1] such that f ′(c) = 0 [1].

(b) Following the hint, let h(x) := f(x) − g(x) [1]. Now as a sum of continuous and
differentiable functions, h is continuous and differentiable [1]. Now

h(x1) = f(x1)− g(x1) = 0,

h(x2) = f(x2)− g(x2) = 0,

⇒ h(x1) = h(x2) [1].

Hence h satisfies the hypothesis of Rolle’s Theorem on the interval [x1, x2] [2]. That
is there exists a c ∈ (x1, x2) [2] such that:

h′(c) = 0 [1],

⇒ f ′(c)− g′(c) = 0 [2],

⇒ f ′(c) = g′(c).

i.e. the tangent line to f(x) at c at c is parallel to the tangent line to g(x) at c •

(c) The Mean Value Theorem implies that there exists a point c ∈ (0, 1) [1] such that

p′(c) =
p(1)− p(a)

1− 0
= p(1)− p(0) [2], (5)

i.e. a point where the slope is equal to the average slope across [0, 1]. Now

p(1)− p(0) = a+ b+ c− (a(0)2 + b(0) + c),

= a+ b [1].

Also
p′(x) = 2ax+ b [1]. (6)

Hence we are looking for a solution to the equation

p′(x) = p(1)− p(0) [2],

⇒ 2ax+ b = a+ b [1]

⇒ x =
a

2a
=

1

2
[2].

i.e. we have verified the Mean Value Theorem for the function p(x) •

Question 5

Let f : R → R be defined by:

f(x) =
x2 + x+ 1

x+ 1
For what values of x is this function defined? Describe the ‘horizontal’ and vertical asymp-
totes of f(x). Using the second derivative test, find and classify all local maxima and minima.
By using the method of split points, find the intervals where f(x) is concave up and concave
down. Find the roots of f(x) if any. Find where f(x) cuts the y-axis.
Use all of this information to sketch the graph of y = f(x).

4a lot of us mixed up the hypothesis and the conclusion. In general, a theorem will read “If some object
satisfies these conditions... then the object has these properties.””
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Solution

• Domain: The function is defined for all x ∈ R such that x+ 1 ̸= 0 ⇔ x ̸= −1 [1].

• Horizontal Asymptotes: The ‘horizontal’ asymptote is got by examining the be-
haviour as x → ∞:

lim
x→∞

x2 + x+ 1

x+ 1
≈ x2

x
= x [2]. (7)

• Vertical Asymptotes: The vertical asymptotes of f(x) occur when f(x) → ∞. It is
necessary that the denominator tends to 0: x + 1 → 0 ⇒ x → −1 [1]. However, this
is not a sufficient condition5. Hence evaluate the limit as x → −1:

lim
x→−1

f(x) =

(
lim
x→−1

x2 + x+ 1

)(
lim
x→−1

1

x+ 1

)
,

= 1 · ∞ = ∞ [1].

i.e. there is a vertical asymptote at x = −1.

• Maxima/ Minima: To use the second derivative test to find maxima and minima
first we find the stationary points where f ′(x) = 0 — and then test whether they are
maxima or minima by testing the second derivative (y′′ < 0 for maxima; y′′ > 0 for
minima.). Using the quotient rule:

f ′(x) =
(x+ 1)(2x+ 1)− (x2 + x+ 1)(1)

(x+ 1)2
,

=
2x2 + x+ 2x+ 1− x2 − x− 1

(x+ 1)2
,

=
x2 + 2x

(x+ 1)2
=

x(x+ 2)

(x+ 1)2
[1].

Now f ′(x) is a fraction so only zero when the top is zero, morryah x(x+2) = 0 ⇒ x = 0
or x = −2 [1]. Now using a quotient rule again:

f ′′(x) =
(x+ 1)�2(2x+ 2)− 2����(x+ 1)(x2 + 2x)

(x+ 1)
3

�4
.

As the function is not defined at x = −1 ⇒ x+ 1 = 0, we can divide above and below
by (x+ 1):

f ′′(x) =
��2x2 +�����2x+ 2x+ 2−��2x2 −��4x

(x+ 1)3
=

2

(x+ 1)3
[1].

Now f ′′(0) = 2 > 0 so there is a local minimum at x = 0 (with y-coordinate f(0) = 1)
[1]; and f ′′(−2) = −2 < 0 so there is a local maximum at x = −2 (with y-coordinate
f(−2) = −3 [1]. )

• Concavity: A function is concave up for f ′′(x) > 0 and concave down for f ′′(x) < 0.
The concavity can only change, therefore, at split points when f ′′ = 0 or undefined.
f ′′(x) ̸= 0 as 2 ̸= 0 but undefined when x = −1. Hence set up the split point diagram:

5nearly all students got x = −1 is a vertical asymptote but never checked the limit as x → −1. This is
vital. For example, g(x) = (x2 − 9)/(x− 3) seems to have a vertical asymptote at x → +3 but if we in fact
evaluate the limit we will find that g(x) doesn’t grow infinitely big but instead tends to 6; that is x = 3 is
not a vertical asymptote.
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Figure 1: A function’s concavity can only change at split points. In this example, to deter-
mine the concavity on (−∞,−1) and (−1,∞) we choose test points in these intervals. Any
will do — here we choose x = −2, 0 [1].

f ′′(−2) < 0 implies that f is concave down on (−∞,−1) [1] and f ′′(0) > 0 implies
that f is concave up on (−1,∞) [1].

• Roots:

f(x) =
x2 + x+ 1

x+ 1
= 0 ⇔ x2 + x+ 1 = 0.

Now

x± =
−1±

√
1− 4(1)(1)

2
=

−1±
√
−3

2
.

Hence there are no real roots [1].

• y-Intercept: The graph cuts the y-axis when x = 0; that is at f(0) = 1 [1].

Hence we produce the plot:

-1-2
x

-3

f HxL

Figure 2: Notice that we include the vertical asymptote x = −1 [2] and the ‘horizontal’
asymptote y = x [1] — and more importantly that the graph of f(x) behaves like them
when it gets far from the origin. We show the maxima at (−2,−3) [2] and the minima at
(0, 1) [2]. We have the graph concave down for x < −1 [1] and concave up for x > −1 [1];
as required. Finally we exhibit that f(x) has no roots.
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