

MS2001 Summer 2011 Solutions

Question 1

(a) Let $x \in \mathbb{R}$ be a real number such that $x > 1$ and let $n \in \mathbb{N}$ be a natural number such that $n \geq 2$. Using the properties of the inequality relation, or induction, prove carefully that

$$x^n > x.$$

(b) Use the Calculus of Limits to evaluate:

$$\lim_{x \rightarrow 1} \frac{\sqrt{x+8} - 3}{1-x}$$

(c) Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by:

$$f(x) = (\sqrt{x^2 + 1} + \sin x)^{50}$$

Consider the statement:

The function $f(x)$ is differentiable on \mathbb{R} .

Is this statement true or false? Give reasons for your answer. Please find $f'(x)$ where f is differentiable.

(d) A cylinder is to be made such that the sum of its radius r , and its height, h , is 6 cm. Find, in terms of π , the maximum possible volume of such a cylinder.

Solution

(a) **Direct Method:** By assumption, $x > 1$. We can multiply both sides by x as $x > 0$ (*If $a, b, c \in \mathbb{R}$ and $c > 0$ then $a > b$ implies $ca > cb$ [2 — Including Use]*). That is we have

$$x^2 > x.$$

Now we can multiply the LHS by x and the RHS by 1 (*If $a, b, c, d \in \mathbb{R}$, $a > b > 0$ and $c > d > 0$, then $ac > bd$ [2 — Including Use]*). Hence

$$\begin{aligned} & x^3 > x \\ \Rightarrow & \underbrace{x \cdots x}_{\text{repeat until } n \text{ 'x's.}} > x \quad [1] \\ \Rightarrow & x^n > x \end{aligned}$$

•

Inductive Method: Let $P(n)$ be the proposition that if $x > 1$ and $n \in \mathbb{N}$, that $x^n > x$.

Consider $P(2)$ [1]. Is $x^2 > x$? Well $x^2 - x = x(x - 1)$. Clearly $x > 0$ and $x > 1$ implies $x - 1 > 0$. Hence $x(x - 1)$ is the product of positive real numbers so is positive:

$$\begin{aligned} x^2 - x &> 0, \\ \Rightarrow x^2 &> x; \end{aligned}$$

that is $P(2)$ is true [1]¹.

Assume that $P(k)$ is true [1]:

$$x^k > x.$$

Consider $P(k + 1)$. Is $x^{k+1} > x$ [1]? Consider $x^{k+1} - x = x(x^k - 1)$ [1]. Once again $x > 0$ and by the inductive hypothesis, $x^k > x > 1$ and hence $x^k > 1$. That means $x^k - 1 > 0$ and thus $x^{k+1} - x$ is a product of positive terms and hence positive. That is

$$\begin{aligned} x^{k+1} - x &> 0, \\ \Rightarrow x^{k+1} &> x \quad [1] \end{aligned}$$

Hence by the Axiom of Induction the statement $P(n)$ is true for all $n \in \mathbb{N}$ •

(b) Firstly plugging in $x = 1$ results in $0/0$. Mutliplying by the conjugate of the numerator:

$$\begin{aligned} \frac{\sqrt{x+8} - 3}{1-x} &= \frac{\sqrt{x+8} - 3}{1-x} \times \left(\frac{\sqrt{x+8} + 3}{\sqrt{x+8} + 3} \right) \quad [2], \\ &= \frac{(x+8) - 9}{(1-x)(\sqrt{x+8} + 3)} = -\frac{(x-1)}{(x-1)(\sqrt{x+8} + 3)} \quad [2], \\ &= -\frac{1}{\sqrt{x+8} + 3}, \end{aligned}$$

if $x \neq 1$. Hence

$$\lim_{x \rightarrow 1} \frac{\sqrt{x+8} - 3}{1-x} = \lim_{x \rightarrow 1} \left(-\frac{1}{\sqrt{x+8} + 3} \right) = -\frac{1}{6} \quad [2].$$

(c) This statement is true [1/2]. $\sin x$ is differentiable [1/2]². \sqrt{x} is differentiable for $x > 0$ [1/2]. $x^2 + 1 > 0$ for all x as $x^2 \geq 0 \Rightarrow x^2 > -1 \Rightarrow x^2 + 1 > 0$ [1/2]. Moreover $x^2 + 1$ is differentiable as it is a polynomial. By the Chain Rule $\sqrt{x^2 + 1}$ is differentiable [1/2]. By the Sum Rule $\sqrt{x^2 + 1} + \sin x$ is differentiable [1/2]. x^{50} is differentiable as

¹Less than three people proved the base case $P(2)$. You can't just say " $x^2 > x$ true" — you must prove it. This is one of many ways of proving it.

²if you say differentiable it means *differentiable everywhere*

x^{50} is a polynomial [1/2]. By the Chain Rule $f(x)$ is differentiable [1/2].

$$\begin{aligned}
 f'(x) &= 50(\sqrt{x^2 + 1} + \sin x)^{49} \left[\frac{d}{dx}[(x^2 + 1)^{1/2} + \sin x] \right] \quad [1] \\
 &= 50(\sqrt{x^2 + 1} + \sin x)^{49} \left[\frac{1}{2}(x^2 + 1)^{-1/2} \cdot (2x) + \cos x \right] \quad [1] \\
 &= 50(\sqrt{x^2 + 1} + \sin x)^{49} \left[\frac{x}{\sqrt{x^2 + 1}} + \cos x \right] \quad [1]
 \end{aligned}$$

(d) The volume of a cylinder is given by

$$V(r, h) = \pi r^2 h. \quad (1)$$

From the question we know that $r + h = 6$ that is $h = 6 - r$ [1] so that we can write the volume as a function of a r alone:

$$V(r) = \pi r^2 (6 - r) = 6\pi r^2 - \pi r^3 \quad [1]. \quad (2)$$

As this function is defined on the closed interval $[0, 6]$, we can analyse this function using the Closed Interval Method³. This theorem states that the absolute extrema of a continuous function are found at the critical points. The critical points are the endpoints, the stationary points and where the function is not differentiable. Clearly $r = 0$ and $r = 6$ are critical points. Next we find points where the derivative equals zero:

$$\begin{aligned}
 \frac{dV}{dr} &= 12\pi r - 3\pi r^2 \stackrel{?}{=} 0 \quad [1]; \\
 \Rightarrow 3\pi r(4 - r) &= 0,
 \end{aligned}$$

That is $r = 0$ or $r = 4$ [1]. As $V(r)$ is a polynomial it is differentiable everywhere so the critical points are $r = 0, 4, 6$.

$$\begin{aligned}
 V(0) &= \pi(0)^2(6) = 0\pi \text{ cm}^3 \\
 V(4) &= \pi(4)^2(2) = 32\pi \text{ cm}^3 \\
 V(6) &= \pi(6)^2(0) = 0\pi \text{ cm}^3 \quad [1]
 \end{aligned}$$

Hence the maximum possible volume is $32\pi \text{ cm}^3$ [1].

Question 2

(a) Using the Closed Interval Method or otherwise, find a positive upper bound $M \in \mathbb{R}$ such that,

$$|x^2 - 7x + 4| < M.$$

for $x \in [2, 4]$.

(b) Hence use the $\varepsilon - \delta$ definition of a limit to prove that:

$$\lim_{x \rightarrow 3} (x^3 - 10x^2 + 25x - 6) = 6.$$

³in fact we can use the First and Second Derivative Tests also if we're careful about the domain of $V(r)$ — namely $(0, 6)$ in reality.

Solution

(a) **Closed Interval Method:** Let $f(x) := x^2 - 7x + 4$ [1]. As a polynomial, f is continuous and hence satisfies the hypothesis of the Closed Interval Method on the closed interval $[2, 4]$. That is the absolute extrema of f occur at the critical points of f . The critical points are the endpoints, the points where $f' = 0$ and the points where f' is undefined [3]. As a polynomial, f is differentiable so the only critical points are $x = 2, 4$ and where $f' = 0$.

$$\begin{aligned} f'(x) &= 2x - 7 \stackrel{?}{=} 0, \\ \Rightarrow 2x &= 7, \\ \Rightarrow x &= \frac{7}{2} \quad [2]. \end{aligned}$$

Now

$$\begin{aligned} f(2) &= 4 - 14 + 4 = -6 \quad [1], \\ f(4) &= 16 - 28 + 4 = -8 \quad [1], \\ f(7/2) &= \frac{49}{4} - \frac{49}{2} + 4 = -\frac{33}{4} \quad [1]. \end{aligned}$$

Hence we can say that $|x^2 - 7x + 4| \leq 33/4 < 9 =: M$, for all $x \in [2, 4]$ [1].

Using Inequalities: Using the triangle inequality and the fact that $|xy| = |x||y|$:

$$\begin{aligned} |x^2 - 7x + 4| &\leq |x^2| + |-7x| + |4| \quad [4], \\ &\leq |x|^2 + 7|x| + 4 \quad [2], \\ &\leq 16 + 28 + 4 = 48 \quad [2], \end{aligned}$$

Hence we can say that $|x^2 - 7x + 4| \leq 48 < 49 =: M$ [2].

(b) Let $g(x) = x^3 - 10x^2 + 25x - 6$ and consider

$$\begin{aligned} |f(x) - 6| &= |(x^3 - 10x^2 + 25x - 6) - 6|, \\ &= |x^3 - 10x^2 + 25x - 12| \quad [1]. \end{aligned}$$

By inspection $g(3) = 0$ [1] hence by the Factor Theorem $(x - 3)$ is a root of $g(x)$:

$$\begin{array}{r} x^2 \quad -7x \quad +4 \\ x - 3 \mid x^3 \quad -10x^2 \quad +25x \quad -12 \\ \hline x^3 \quad -3x^2 \\ \hline -7x^2 \quad +25x \\ -7x^2 \quad +21x \\ \hline 4x \quad -12 \\ 4x \quad -12 \\ \hline 0 \end{array} \quad [2]$$

Hence (using either $M = 9, 49$ or similar)

$$\begin{aligned} |g(x) - 6| &= |(x^2 - 7x + 4)(x - 3)|, \\ &\leq |x^2 - 7x + 4||x - 3| \quad [1], \\ &< M|x - 3| \quad [3]. \end{aligned}$$

Suppose that $\varepsilon > 0$ [2]. Then if we choose $\delta := \varepsilon/M$ and $0 < |x - 3| < \varepsilon/M$ [3]:

$$|g(x) - 6| < M|x - 3| < M \cdot \frac{\varepsilon}{M} < \varepsilon \quad [2].$$

i.e.

$$\lim_{x \rightarrow 3} (x^3 - 10x^2 + 25x - 6) = 6.$$

•

Question 3

(a) Let $a \in \mathbb{R}$ and consider the function $f : \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$f(x) = \begin{cases} |x - a| & \text{if } x < 0 \\ x - a & \text{if } x \geq 0 \end{cases}.$$

For what value(s) of a is f continuous?

Suppose $a = 1$. Is f differentiable at $x = 0$? Justify your answer.

(b) The *Folium of Descartes* is a plane curve with the equation

$$x^3 + y^3 - 3xy = 0$$

It passes through the origin, has a single loop, and has two branches that are asymptotic to the straight line $y = -x - a$. The Folium of Descartes has a horizontal tangent at the origin. Find the x -coordinate of the other point where it has a horizontal tangent.

Solution

(a) Away from 0, f is continuous [1]. For $x < 0$, $f(x)$ is the composition of the continuous functions $|\cdot|$ and $x - a$ [1]; and for $x > 0$, $f(x)$ is a polynomial. Hence we examine the limit as $x \rightarrow 0$.

$$\begin{aligned} \lim_{x \rightarrow 0^-} f(x) &= \lim_{x \rightarrow 0^-} |x - a| = |-a| = |a| \quad [2], \\ \lim_{x \rightarrow 0^+} f(x) &= \lim_{x \rightarrow 0^+} (x - a) = -a \quad [2]. \end{aligned}$$

So for f to be continuous we require that

$$|a| = -a \quad [2]. \tag{3}$$

The only real numbers that satisfy these conditions are zero and the negative numbers. Hence f is continuous for $a \in (-\infty, 0]$ [2].

No it is not. If $a = 1$ then f is not continuous at 0. Not continuous implies not differentiable [3].

(b) For a horizontal tangent we must have

$$\frac{dy}{dx} = 0 \quad [2]. \tag{4}$$

Differentiating across with respect to x :

$$\begin{aligned}
 \frac{d}{dx}(x^3 + [y(x)]^3 - 3x[y(x)]) &= \frac{d}{dx}0 \quad [2], \\
 \Rightarrow 3x^2 + 3y^2 \frac{dy}{dx} - 3x \frac{dy}{dx} - 3y &= 0, \\
 \Rightarrow \frac{dy}{dx}(3y^2 - 3x) &= 3y - 3x^2 \quad [1], \\
 \Rightarrow \frac{dy}{dx} &= \frac{3y - 3x^2}{3y^2 - 3x} \quad [1].
 \end{aligned}$$

We know that $a/b = 0 \Rightarrow a = 0$. Hence we require

$$3y - 3x^2 = 0 \Rightarrow y = x^2 \quad [1].$$

To see which points on the curve satisfy this condition, substitute into the equation of the curve:

$$\begin{aligned}
 x^3 + (x^2)^3 - 3x(x^2) &= 0 \quad [1], \\
 \Rightarrow x^3 + x^6 - 3x^3 &= 0, \\
 \Rightarrow x^6 - 2x^3 &= 0, \\
 \Rightarrow x^3(x^3 - 2) &= 0 \quad [1].
 \end{aligned}$$

Hence we either have $x^3 = 0$ or $x^3 - 2 = 0$. The first of these refers to the origin hence we require:

$$\begin{aligned}
 x^3 - 2 &= 0, \\
 \Rightarrow x^3 &= 2, \\
 \Rightarrow x &= \sqrt[3]{2} \quad [2].
 \end{aligned}$$

Question 4

- (a) State Rolle's Theorem.
- (b) Suppose that $f : \mathbb{R} \rightarrow \mathbb{R}$ and $g : \mathbb{R} \rightarrow \mathbb{R}$ are continuous and differentiable. Prove that if there exist distinct points $x_1, x_2 \in \mathbb{R}$ with

$$f(x_1) = g(x_1), \text{ and } f(x_2) = g(x_2),$$

then there exists a point $c \in (x_1, x_2)$ such that the tangent line to $f(x)$ at c is parallel to the tangent line to $g(x)$ at c .

[HINT: Consider the function $h(x) := f(x) - g(x)$.]

- (c) For $a, b, c \in \mathbb{R}$ and $a \neq 0$, the function

$$p(x) = ax^2 + bx + c$$

is continuous and differentiable and so satisfies the hypothesis of the the Mean Value Theorem on any (bounded) closed interval. Verify the Mean Value Theorem for $p(x)$ on the closed interval $[0, 1]$.

Solution

(a) If⁴ $f : [a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ [1], differentiable on (a, b) [1] and $f(a) = f(b)$ [1], then there exists a $c \in (a, b)$ [1] such that $f'(c) = 0$ [1].

(b) Following the hint, let $h(x) := f(x) - g(x)$ [1]. Now as a sum of continuous and differentiable functions, h is continuous and differentiable [1]. Now

$$\begin{aligned} h(x_1) &= f(x_1) - g(x_1) = 0, \\ h(x_2) &= f(x_2) - g(x_2) = 0, \\ \Rightarrow h(x_1) &= h(x_2) \quad [1]. \end{aligned}$$

Hence h satisfies the hypothesis of Rolle's Theorem on the interval $[x_1, x_2]$ [2]. That is there exists a $c \in (x_1, x_2)$ [2] such that:

$$\begin{aligned} h'(c) &= 0 \quad [1], \\ \Rightarrow f'(c) - g'(c) &= 0 \quad [2], \\ \Rightarrow f'(c) &= g'(c). \end{aligned}$$

i.e. the tangent line to $f(x)$ at c at c is parallel to the tangent line to $g(x)$ at c •

(c) The Mean Value Theorem implies that there exists a point $c \in (0, 1)$ [1] such that

$$p'(c) = \frac{p(1) - p(0)}{1 - 0} = p(1) - p(0) \quad [2], \quad (5)$$

i.e. a point where the slope is equal to the average slope across $[0, 1]$. Now

$$\begin{aligned} p(1) - p(0) &= a + b + c - (a(0)^2 + b(0) + c), \\ &= a + b \quad [1]. \end{aligned}$$

Also

$$p'(x) = 2ax + b \quad [1]. \quad (6)$$

Hence we are looking for a solution to the equation

$$\begin{aligned} p'(x) &= p(1) - p(0) \quad [2], \\ \Rightarrow 2ax + b &= a + b \quad [1] \\ \Rightarrow x &= \frac{a}{2a} = \frac{1}{2} \quad [2]. \end{aligned}$$

i.e. we have verified the Mean Value Theorem for the function $p(x)$ •

Question 5

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be defined by:

$$f(x) = \frac{x^2 + x + 1}{x + 1}$$

For what values of x is this function defined? Describe the 'horizontal' and vertical asymptotes of $f(x)$. Using the second derivative test, find and classify all local maxima and minima. By using the method of split points, find the intervals where $f(x)$ is concave up and concave down. Find the roots of $f(x)$ if any. Find where $f(x)$ cuts the y -axis.

Use all of this information to sketch the graph of $y = f(x)$.

⁴a lot of us mixed up the **hypothesis** and the **conclusion**. In general, a theorem will read "If some object **satisfies these conditions...** then the object *has these properties.*"

Solution

- **Domain:** The function is defined for all $x \in \mathbb{R}$ such that $x + 1 \neq 0 \Leftrightarrow x \neq -1$ [1].
- **Horizontal Asymptotes:** The ‘horizontal’ asymptote is got by examining the behaviour as $x \rightarrow \infty$:

$$\lim_{x \rightarrow \infty} \frac{x^2 + x + 1}{x + 1} \approx \frac{x^2}{x} = x \quad [2]. \quad (7)$$

- **Vertical Asymptotes:** The vertical asymptotes of $f(x)$ occur when $f(x) \rightarrow \infty$. It is necessary that the denominator tends to 0: $x + 1 \rightarrow 0 \Rightarrow x \rightarrow -1$ [1]. However, this is not a sufficient condition⁵. Hence evaluate the limit as $x \rightarrow -1$:

$$\begin{aligned} \lim_{x \rightarrow -1} f(x) &= \left(\lim_{x \rightarrow -1} x^2 + x + 1 \right) \left(\lim_{x \rightarrow -1} \frac{1}{x + 1} \right), \\ &= 1 \cdot \infty = \infty \quad [1]. \end{aligned}$$

i.e. there is a vertical asymptote at $x = -1$.

- **Maxima/ Minima:** To use the second derivative test to find maxima and minima first we find the stationary points where $f'(x) = 0$ — and then test whether they are maxima or minima by testing the second derivative ($y'' < 0$ for maxima; $y'' > 0$ for minima.). Using the quotient rule:

$$\begin{aligned} f'(x) &= \frac{(x+1)(2x+1) - (x^2+x+1)(1)}{(x+1)^2}, \\ &= \frac{2x^2 + x + 2x + 1 - x^2 - x - 1}{(x+1)^2}, \\ &= \frac{x^2 + 2x}{(x+1)^2} = \frac{x(x+2)}{(x+1)^2} \quad [1]. \end{aligned}$$

Now $f'(x)$ is a fraction so only zero when the top is zero, morryah $x(x+2) = 0 \Rightarrow x = 0$ or $x = -2$ [1]. Now using a quotient rule again:

$$f''(x) = \frac{(x+1)^2(2x+2) - 2(x+1)(x^2+2x)}{(x+1)^4}.$$

As the function is not defined at $x = -1 \Rightarrow x + 1 = 0$, we can divide above and below by $(x+1)$:

$$f''(x) = \frac{2x^2 + 2x + 2 - 2x^2 - 4x}{(x+1)^3} = \frac{2}{(x+1)^3} \quad [1].$$

Now $f''(0) = 2 > 0$ so there is a local minimum at $x = 0$ (with y -coordinate $f(0) = 1$ [1]; and $f''(-2) = -2 < 0$ so there is a local maximum at $x = -2$ (with y -coordinate $f(-2) = -3$ [1].)

- **Concavity:** A function is concave up for $f''(x) > 0$ and concave down for $f''(x) < 0$. The concavity can only change, therefore, at split points when $f'' = 0$ or undefined. $f''(x) \neq 0$ as $2 \neq 0$ but undefined when $x = -1$. Hence set up the split point diagram:

⁵nearly all students got $x = -1$ is a vertical asymptote but never checked the limit as $x \rightarrow -1$. This is vital. For example, $g(x) = (x^2 - 9)/(x - 3)$ seems to have a vertical asymptote at $x \rightarrow +3$ but if we in fact evaluate the limit we will find that $g(x)$ doesn’t grow infinitely big but instead tends to 6; that is $x = 3$ is *not* a vertical asymptote.

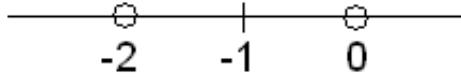


Figure 1: A function's concavity can only change at split points. In this example, to determine the concavity on $(-\infty, -1)$ and $(-1, \infty)$ we choose *test points* in these intervals. Any will do — here we choose $x = -2, 0$ [1].

$f''(-2) < 0$ implies that f is concave down on $(-\infty, -1)$ [1] and $f''(0) > 0$ implies that f is concave up on $(-1, \infty)$ [1].

- **Roots:**

$$f(x) = \frac{x^2 + x + 1}{x + 1} = 0 \Leftrightarrow x^2 + x + 1 = 0.$$

Now

$$x_{\pm} = \frac{-1 \pm \sqrt{1 - 4(1)(1)}}{2} = \frac{-1 \pm \sqrt{-3}}{2}.$$

Hence there are *no* real roots [1].

- **y -Intercept:** The graph cuts the y -axis when $x = 0$; that is at $f(0) = 1$ [1].

Hence we produce the plot:

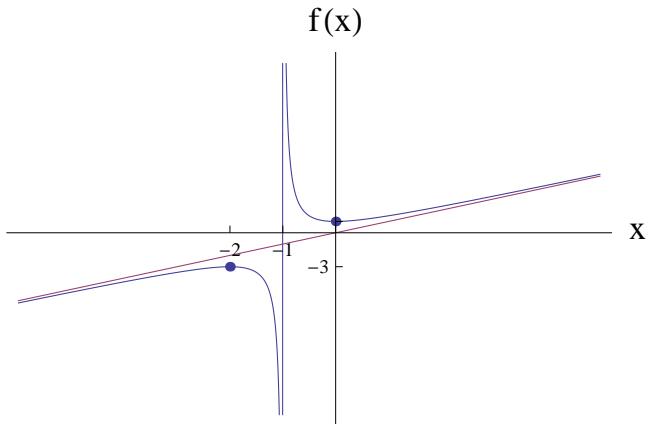


Figure 2: Notice that we include the vertical asymptote $x = -1$ [2] and the ‘horizontal’ asymptote $y = x$ [1] — and more importantly that the graph of $f(x)$ behaves like them when it gets far from the origin. We show the maxima at $(-2, -3)$ [2] and the minima at $(0, 1)$ [2]. We have the graph concave down for $x < -1$ [1] and concave up for $x > -1$ [1]; as required. Finally we exhibit that $f(x)$ has no roots.