

MS 2001: Test 1 A and 1 B Q. 3

Answer all questions. Marks may be lost if necessary work is not clearly shown.

The more justification the better but not necessarily required for full marks — J.P.

Question 1

(a) Find the solution set of the following inequality:

$$\left| \frac{x+1}{3x-2} \right| < 5, \quad x \neq 2/3.$$

(b) Evaluate the following using the Calculus of Limits.

$$\lim_{t \rightarrow -2} \frac{t^3 + 8}{t + 2}.$$

Solution

(a) First we split the absolute value of the fraction:

$$\begin{aligned} \left| \frac{x+1}{3x-2} \right| &< 5, \\ \Rightarrow |x+1| &< 5|3x-2|, \\ \Rightarrow |x+1|^2 &< [5|3x-2|]^2, \\ \Rightarrow (15x-10)^2 - (x+1)^2 &> 0, \\ \Rightarrow [(15x-10) + (x+1)][(15x-10) - (x+1)] &> 0, \\ \Rightarrow (16x-9)(14x-11) &> 0, \end{aligned}$$

where we used the fact that we could multiply across by $|3x-2| > 0$, the fact that $|x|^2 = x^2$ and the difference of two squares. Now $q(x) = (16x-9)(14x-11)$ is a $+ax^2$ or \cup quadratic functions so positive *outside* the roots. The roots of q are $x = 9/16$ and $11/14$ ($11/14 > 9/16$) hence the solution set is given by

$$(-\infty, 9/16) \cup (11/14, \infty).$$

(b) Firstly we check the value of the function at $t = -2$:

$$\frac{(-2)^3 + 8}{-2 + 2} = \frac{0}{0},$$

undefined. Now -2 is a root of $t^3 + 8$ so by the Factor Theorem $t + 2$ is a factor:

$$\begin{array}{r} t^2 & -2t & +4 \\ t+2 \mid t^3 & 0t^2 & 0t & +8 \\ t^3 & +2t^2 \\ \hline -2t^2 & +0t \\ -2t^2 & +4t \\ \hline 4t & +8 \\ 4t & +8 \\ \hline 0 \end{array}.$$

Hence we may write:

$$\begin{aligned}\frac{t^3 + 8}{t + 2} &= \frac{(t + 2)(t^2 - 2t + 4)}{t + 2}, \\ &= t^2 - 2t + 4,\end{aligned}$$

as we can cancel the $t + 2$ s when $t \neq -2$ — which is the case here as we are looking at the limit as $t \rightarrow -2$ — which is not concerned with $t = -2$. Therefore we have

$$\begin{aligned}\lim_{t \rightarrow -2} \frac{t^3 + 8}{t + 2} &= \lim_{t \rightarrow -2} (t^2 - 2t + 4) \\ &= (-2)^2 - 2(-2) + 4 = 12.\end{aligned}$$

Question 2

Define what it means for a function $f : \mathbb{R} \rightarrow \mathbb{R}$ to be continuous at a point $a \in \mathbb{R}$.

For a constant $k \in \mathbb{R}$, consider the function $g : \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$g(x) := \begin{cases} x^2 & \text{for } x > 0 \\ x + 1 & \text{for } -1 < x \leq 0 \\ 3x + k & \text{for } x \leq -1 \end{cases}$$

Is g continuous at 0? Justify your answer. For what value(s) of $k \in \mathbb{R}$ is g continuous at $x = -1$? Justify your answer.

Solution

A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is continuous at a point $a \in \mathbb{R}$ if

$$\lim_{x \rightarrow a} f(x) = f(a).$$

A rough sketch of the function suggests that the function is *not* continuous at 0. We can show this by showing that the left- and right-hand limits at 0 disagree.

$$\begin{aligned}\lim_{x \rightarrow 0^-} g(x) &= \lim_{x \rightarrow 0} (x + 1) = 1, \\ \lim_{x \rightarrow 0^+} g(x) &= \lim_{x \rightarrow 0} (x^2) = 0.\end{aligned}$$

As the left- and right-hand limits disagree, the limit at 0 does not exist so the function is not continuous at 0.

To find a k such that g is continuous we examine the left- and right-hand limits at -1 :

$$\begin{aligned}\lim_{x \rightarrow -1^-} g(x) &= \lim_{x \rightarrow -1} (3x + k) = -3 + k, \\ \lim_{x \rightarrow -1^+} g(x) &= \lim_{x \rightarrow -1} (x + 1) = 0.\end{aligned}$$

For g to be continuous at -1 , it is necessary that these agree:

$$\begin{aligned}-3 + k &= 0, \\ \Rightarrow k &= 3.\end{aligned}$$

Now the one-sided limits agree so the limit at -1 is zero — and equal to the value of the function there as required. Ans: $k = 3$.

Question 3

1. Suppose that $f : \mathbb{R} \rightarrow \mathbb{R}$ is an *odd* function. Which of the following statements are true? (Circle the correct statement)

(a) The graph of $f(x)$ is symmetric about the line $x = 0$.

A symmetry about the line $x = 0$ is equivalent to a symmetry about the y -axis yielding $f(-x) = f(x)$ — this is an even function. A counterexample is given by $f(x) = x$. An odd function has symmetry about the line $y = -x$.

(b) f has no real roots.

$f(x) = x$ is odd but has a real root.

(c) f is a polynomial of the form

$$f(x) = a_n x^n + \cdots + a_5 x^5 + a_3 x^3 + a_1 x,$$

where all the powers of x are odd.

$f(x) = \sin x$ is odd and doesn't have this form. It does have a power series of odd degree powers but power series are not polynomials as we've defined them.

(d) For all $x \in \mathbb{R}$, $f(-x) = -f(x)$. \checkmark

2. Suppose that $r : \mathbb{R} \rightarrow \mathbb{R}$ is a *rational* function. Which of the following statements are true? (Circle the correct statement)

(a) $r(x) = p(x)/q(x)$ for some polynomials $p(x)$, $q(x)$. \checkmark

(b) $r : \mathbb{Q} \rightarrow \mathbb{Q}$.

Define a rational function by

$$r(x) = \frac{x + (\sqrt{2} - 1)}{x}.$$

Now r is a rational function such that $r(1) = \sqrt{2}$ — hence it doesn't send fractions to fractions necessarily.

(c) r has no real roots.

Define a rational function by

$$r(x) = \frac{x - 1}{x}.$$

Now r is a rational function with a root at $x = 1$.

(d) For some $n \in \mathbb{N}$, and $a_n, a_{n-1}, \dots, a_1, a_0 \in \mathbb{R}$, with $a_n \neq 0$.

$$r(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0.$$

This is the definition of a polynomial. In particular, the rational function

$$r(x) = \frac{x^2 + 1}{x}$$

doesn't have this form.

3. Consider the *left-hand limit* of a function $f : \mathbb{R} \rightarrow \mathbb{R}$? Which of the following statements are true? (Circle the correct statement)

(a) If the left-hand limit at $a \in \mathbb{R}$,

$$\lim_{x \rightarrow a^-} f(x) = L,$$

then

$$\lim_{x \rightarrow a^+} f(x) = L.$$

Define $f : \mathbb{R} \rightarrow \mathbb{R}$

$$f(x) := \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \leq 0 \end{cases}$$

Then the left-hand limit at 0 is 0 but the right-hand limit at 0 is not 0 also — it's 1.

(b) If the left-hand limit at $a \in \mathbb{R}$ exists, and furthermore we have that

$$\lim_{x \rightarrow a^-} f(x) = f(a),$$

then the limit

$$\lim_{x \rightarrow a} f(x)$$

exists also.

The function defined in part (a) has this property — the left-hand limit at 0 is equal to the value of the function at 0 — but the limit at 0 does not exist.

(c) If

$$\lim_{x \rightarrow a^-} f(x) = 10,$$

then there exists a positive real number d such that whenever $0 < a - x < d$, then $|f(x) - 10| < 1/100$.

✓ Take the definition of a left-handed limit $\lim_{x \rightarrow a^-} f(x) = L$. Given any $\varepsilon > 0$, there exists a $\delta > 0$ such that whenever $0 < a - x < \delta$, we have $|f(x) - L| < \varepsilon$. Now in this case we are told $\lim_{x \rightarrow a^-} = 10$. It is true that $\varepsilon = 1/100 > 0$ and our $L = 10$. So given this $\varepsilon = 1/100$, we know that there exists a $\delta = d > 0$ such that whenever $0 < a - x < d$, we have $|f(x) - 10| < 1/100$.

(d) If the left-hand limit at $a \in \mathbb{R}$ exists then f is continuous at a .

Again the function defined in part (a) is a counterexample.

Question 3: Test 1 B

1. Suppose that $f : \mathbb{R} \rightarrow \mathbb{R}$ is an *even* function. Which of the following statements are true? (Circle the correct statement)

(a) f is a polynomial of the form

$$f(x) = a_n x^n + \cdots + a_4 x^4 + a_2 x^2 + a_0,$$

where all the powers of x are even.

$f(x) = \cos x$ is even but not of this form (although it has a power series of even powers of x).

(b) For all $x \in \mathbb{R}$, $f(-x) = f(x)$. \checkmark

(c) The graph of $f(x)$ has a symmetry through the line $y = 0$.

No function has a symmetry through the line $y = 0$ as this would imply that $f(x)$ takes two values whenever f is non-zero: functions map uniquely. A counter-example is $f(x) = x^2$ — which doesn't have a symmetry through $y = 0$. Even functions have a symmetry in the line $x = 0$: the y -axis.

(d) f has real roots.

$f(x) = x^2 + 1$ is even but has no real roots.

2. Suppose that $h : \mathbb{R} \rightarrow \mathbb{R}$ is the *composition* $g \circ f$ of functions $f : \mathbb{R} \rightarrow \mathbb{R}$ and $g : \mathbb{R} \rightarrow \mathbb{R}$. Which of the following statements are true? (Circle the correct statement)

(a) If f and g are continuous, it does not necessarily imply that h is continuous.

Yes it does — this is Proposition 2.3.6

(b) If $f(x) < 0$ then $h(x) < 0$.

Let $f(x) = -1 < 0$ and $g(x) = x^2$. Now $h(x) = g(f(x)) = g(-1) = +1$ which is not negative.

(c) If k is a root of f , then k is a root of h also.

Let $f(x) = 0$ and $g(x) = 1$. Now any x is a root of f , but $h(x) = g(f(x)) = g(0) = 1$ — hence not any x is a root of h .

(d) For all $x \in \mathbb{R}$, $h(x) = g(f(x))$. \checkmark

3. Suppose that a function $f : \mathbb{R} \rightarrow \mathbb{R}$ is *continuous at a point* $a \in \mathbb{R}$? Which are the following statements are true? (Circle the correct statement)

(a) Then the function defined by $g(x) = 1/f(x)$ is continuous at a .

Let $f(x) = x$. Now f is continuous as a polynomial — in particular at $x = 0$ — but $g(x) = 1/x$ is not continuous at 0 as it is not defined there.

(b) There exists a positive real number d such that whenever $|x - a| < d$, then $|f(x) - f(a)| < 1/100$.

\checkmark *To be continuous at a you need $\lim_{x \rightarrow a} f(x) = f(a)$. This is equivalent to*

$$\forall \varepsilon > 0, \exists \delta > 0 : |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon.$$

Here $\varepsilon = 1/100$ is an $\varepsilon > 0$. Therefore there exists a $\delta = d > 0$ such that whenever $|x - a| < d$, we have that $|f(x) - f(a)| < 1/100$.

(c) a is a root of f .

$f(x) = 1$ is continuous as a line so in particular is continuous at 0 — but 0 is not a root of f .

(d) f is continuous at all points $x \in \mathbb{R}$.

The function defined in Test 1 A Q. 3(a) is continuous at $x = 1$ but is not continuous at $x = 0$.