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0.2 Motivation: The Problem of Measure

Mathematics is facts; just as houses are made of stones, so is mathematics made
of facts; but a pile of stones is not a house and a collection of facts is not math-
ematics.

Henri Poincaré

The theme of this module is arguably how to assign a size to certain sets — usually
shapes and solids (you will probably disagree with this in time!). In everyday life this is
usually pretty straightforward; we

e count: {a,b,c,...,z,y, 2} has 26 letters.

e take measurements: length (in one dimension), area (in two dimensions), volume (in
three measurements) or time;

e calculate: rates of radioactive decay.

In each case we compare (and express the outcome) with respect to some base unit; most
of the measurements just mentioned are supposed to be intuitively clear. Nevertheless, let’s
have a closer look at areas:
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An even more flexible shape than the rectangle is the triangle:
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Triangles are actually more basic than rectangles since we can represeht every rectangle,
and actually and odd-shaped quadrangle, as the ‘sum’ of two non-overlapping triangles:
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In doing so we have tacitly assumed a few things. For the triangles we have chosen a
particular base line and the corresponding height arbitrarily. But the concept of area should
not depend on such a choice and the calculation this choice entails. Independence of the
area from the way we calculate it is called well-definedness. Plainly,
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Notice that this allows us the most convenient method to work out in the area. In

" calculating the area of a quadrangle we actually used two assumptions:

e the area of non-overlapping (disjoint!) sets can be added, i.e.

AU = A + A o XNY=4

e congruent triangles have the same area®.

This shows that the least we should expect from a reasonable area measure A is that it is

well-define, take values in [0, oo], and A(0) = 0;
additive, i.e. A(XUY) = A(X) + A(Y) whenever X NY = 0.

An additional property is that area is invariant under congruences.

The above rules allow us to measure arbitrarily odd-looking polygons® using the following
recipe: dissect the polygon into non-overlapping triangles and add their areas. But what
about curved or even more complicated shapes, say, -

Lempty intersection

2[Ex:] argue using the idea of congruent triangles why the area should be half the base times the perpen-
dicular height — this argument here takes the area of a triangle as fundamental

3a figure formed by three or more points in the plane joined by line segments
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Here is one possibility for the circle: inscribe a regular j-sided polygonal® into the circle,
subdivide it into congruent triangles, find the area of each of these slices and then add all j
pieces:

Figure 1: The area of the circle is approximated by triangles. Note the similarity with
differentiation — we approximate the slope of the tangent and then take a limit. Here we
repeat the trick.

In the next step increase 5 — j + 1 by increasing by one the number of points on the
circumference and repeat the above procedure. Eventually®,

AwQA = lim \) X AM@;(P\D = ﬁrl
J-—-’baﬁ

Again, there are a few problems: does the limit exist? Is it submissible to subdivide a set
into arbitrarily many subsets — each of vanishingly small area? Is the procedure independent
of the particular subdivision? In fact, nothing should have stopped us from paving the circle
with ever smaller squares! For a reasonable notion of area measure the answer to these
questions must be assumed to be yes. However, finite additivity is not enough for this and
we have to use instead:

Aca( [JR) = 2 Aan(®)

It can be show that an area measure satisfying all these conditions is powerful enough
to cater for all our everyday needs and for much more. We will also that this good notion of
area measure allows us to introduce integrals, basically starting with the naive (but valid)
idea that the integral of a positive function should be the same as the area of the set between
the graph of the function and the z-axis.

4made from points spaced at an equal distance around the circle
5[Ex]: find this limit by approximating the bases by the arc-length between each point — and the
perpendicular height by the radius, 7.



Chapter 1

Integration

Although this may seem a paradoz, all ezact science is dominated by the idea of
approrimation.

Bertrand Russell
In this chapter we rigourously define the integral of continuous functions defined on a
closed interval and explore some its properties.
1.1 The Definite Integral: Riemann sums

Suppose that f : [a,b] — R is a continuous function. If f > 0, then one can approximate
the area under y = f(z) on [a,b] by drawing rectangles:
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Figure 1.1: Follow the process below to approximate the area under the curve using rectan-
gles.

(i) Divide the interval [a,b] into n > 2 equal pieces.
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(i) Draw a rectangle on each subinterval with height equal to the value of f(z) at the
midpoint of each interval.

Suppose that the length of each subinterval is Az. Then we have

nx Dx = b-q

= A =b—ua
n

In particular we have 1 = a + Az, 2 = a + 2Az,... , z =a+ iAz. Let T; be the
midpoint of the ith subinterval. In this notation we have that the area under the curve is
approximated by

A S+ {& D+ +5&.)Ox
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Intuitively, one expects that if we choose a larger n (i.e., more subintervals, and conse-
quently narrower rectangles) then the total area of the rectangles is a better approximation
of the area under y = f(z). We take the limit as n — oo to therefore define this area:

1.1.1 Definition

Let f : [a,b] — R be continuous. Then the integral of f on [a,b], in the notation above, is
given by:

/bf(:r), dz = T}Lrgloif(x—i)Ax.
¢ i=1

Remarks

1. The sums on the right-hand side here is known as a Riemann sum. That f is continuous
is a sufficient condition for the convergence of such a sum.

2. What if f(z) ¥ 077
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3. Here the function f(z) is the integrand, the a is the lower limit of integration and b is
the upper limit of integration. When a and b are constants, then the definite integral
is a number and does not depend on z; in fact

/abf(x)d:cz/abf(t)dt:/abf(s)ds, ete.

In situations like this where a variable such as z,t,s appears but does not affect the
value of the expression, the variables z,t,s are called dummy variables.

Further Remarks

This notion of integration has been known since the middle of the 19th century. The theory
has since undergone several revolutions particularly the introduction of the Darboux Integral
and the even more powerful Lebesgue Integral which extend this definition in rigour and,
in the case of the Lebesgue Integral, to a much broader class of functions than just the
continuous functions. The Darboux Integral appeals to arbitrary partitions of [a,b] and
instead of looking at the midpoints of the subintervals it instead focusses on maxima and
minima of the function on these subintervals and constructs upper and lower bounds for
the integral/area. Then the limit is taken over all partitions of [a,b] — if the upper and
lower bounds agree then this is defined as the integral. One consequence of this is that for
functions that are Riemann integrable we don’t need to look at Z; but any point in [z; i, )

1.1.2 Proposition

Suppose that f : [a,b] — R, g : [a,b] — R are continuous and k € R, with a < b.
Then we have the following:

1.

/abkf(m)dxzk/abf(x)dx.

/ab[f(x) + g(z)] dz = /abf(x) dz + /abg(x) .

3. If f(z) >0 for all z € [a,b] then
b
/ f(z)dz > 0.

4. If f(z) > g(z) for all z € [a,b], then

[ rwa< | gl

/abf(x)d:c: —/baf(x)dx.
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6. Suppose that f, g are continuous on a closed interval containing a, b and

ceR:
/:f(x)dw———/abf(x)daer/bcf(w)dx

7. Where m € R and M € R are the minimum and maximum of f on [a, b]:

m(b— a) S/bf(x)dng(b—a). (1.1)
8. .
/ f(z)dx = (b—a)f(c) for some c € [a,b].
The Mean Value Theorem for Integrals.
Remark

Here we use properties of infinite limits that we didn’t prove (but sometimes used) in MS2001.
It would be a good exercise to recast Proposition 2.1.4 (Calculus of Limits) it terms of the
limit as z — oo... these facts remain true in this case.

Proof. 1. In the appropriate notation:

ka{(zc\dx = b Y REGE) Dx

Y\"bw =y

\i““ R if&ﬂ/)x
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2. Here we prove for the ‘+ case (‘—’7). Again;

\\M Zg&\& + Zi{i\ Nt

i=|\
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Now the limit of a sum is the sum of the limits:

= lim E&}Ax s i 3(21\/31

h-—%ob =\ N =

3. Suppose f(z) > 0 so that

J A = i Zf&)égg 70

N—=>H =

’7,0

4. This is a corollary of the last proposition as f(z) > g(z) is equivalent to f(z)—g(z) > 0:

j({@ o N dx 2

> (e - g SCQOQ»‘?O

5. Note that Az = (b— a)/n. If instead we integrate b — a we have (Az)’ = (a — b)/n =
—(b—a)/n = —Az. This is how we get a minus e
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6. This is only a sketch of a proof using areas. Once we fix [a, b], assume c differs from a
and b, there are only three possibilities: c< a <b,a<c<banda<b<c

fx)
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Figure 1.2: If a < b < c it is clear that the integral (area) from a — b is comprised as that
from a — ¢ plus ¢ — b.
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Figure 1.3: If a < b < c then the extra area picked up integrating from a — cis negated (by
the previous part) by the area from ¢ — b.
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7. Because f is continuous on the closed interval [a, b], it attains a minimum and maximum
there, i.e., there are numbers m and M such that m < f(z) < M fora <z <b and

there are points z,, and z) in [a, b] such that f(zm) =m, f(zm) = M:

f(0
{6

\
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Figure 1.4: A continuous function on a closed interval attains it’s absolute max and min on
the interval.

Thus

J:QE@&X =l Zf(iﬂﬁxﬁ e M B

n—=>d4=0 -
n=_Yb [

= M(b-a)

A similar proof holds to show the lower bound m(b — a). Both are neatly exhibited in
a picture:

S

\

Figure 1.5: Clearly the area is bounded above and below by these rectangles.
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8. Rewrite (1.1) as

That is,

where T, 2y € [a,b]. This says that the integral (a number) lies between the values
that f takes at the points x,, and zjs. The Intermediate Value Theorem for continuous
functions now implies that there exists a point ¢ lying between z,, and z — therefore
¢ € |a, b] — such that

Jlv=_1 j fGdx

= j:{(x\&m = {@(b-a)

Examples

1. Given that |, 49 f(z)dx = 38, can you deduce the value of f94 f(t)dt? Justify your
answer.
Solution:

Lot e = - $Q)dc =-38

2. Use (1.1) to find largest and smallest possible values of

/15(:16 —2)% du.

Solution: Using the Closed Interval Method, the maxima and minima of f(z) = (z —
2)? on [1,5] are found at endpoints, points where f' = 0 and points where f is not
differentiable:

6= 262 = o ot AL
£ (= 2\ £(s)=(5-2) =




In the next two sections we shall examine how one computes the value of a definite
integral — hopefully not from first principles!
Ezercises

1. Find lower and upper bounds for:

2

dr Ans: — 3 and 3/2.

(i) /25(31: +1)dx Ans: 21 and 48 (ii) /

‘133"}‘

1.2 The First Fundamental Theorem of Calculus

This theorem makes precise the idea if we integrate a function, then differentiate the result,
we get back the original function. Consider definite integrals where one of the limits of
integration is a variable, not a constant. Then the value of the definite integral of the
(continuous) integrand is also variable, i.e., it defines a new function — that is also an anti-
derivative (see later) of the integrand. The First Fundamental Theorem of calculus gives a
simple formula for differentiating such functions.

1.2.1 First Fundamental Theorem of Calculus
Let f :[a,b] — R be continuous. Define g : [a,b] — R by

{e) = / or

Then g differentiable and hence continuous on (a,b) with derwative g'(x) = f(z).

Proof. Fix z € (a,b). We calculate the derivative of g from first principles:



