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Project 1: Riemann Sums

In this project you prove some summation identities and then apply them to calculate various
integrals from first principles. You may assume the following identities about summation
(here ¢, the a; and b; are assumed real numbers):
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Note that you are free to collaborate with each other and use references but this must
be indicated on your hand-up. Evidence of copying or plagiarism will result in divided
marks or no marks. You will not receive diminished marks for accredited collaboration or
referencing although I demand originality of presentation. If you have a problem interpreting
any question feel free to approach me, comment on the webpage or email.

1. A famous story of mathematical lore concerns the great German mathematician Carl
Friedrich Gauss. The story has it that after the young Gauss misbehaved, his teacher,
J.G. Biittner, gave him a task: add from 1 to 100. The young Gauss reputedly produced
the correct answer within seconds, to the astonishment of his teacher and his assistant
Martin Bartels. What Gauss did was add up 1 to 100 like this:

12 3 ... 100
100 99 98 ... 1

Gauss then added the pairs vertically and got 101 each time. As there were 100 such
pairs — and this was the sum added up twice the answer was

1
5 x 101 x 100 = 5050.

Retrace the steps of the legend Gauss to show that
- 1
Yoz et ()
i=1 2

Nice tricks and indeed induction can be used to show that:

n
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2
2. To compute the integral / 22 dz follow the following steps:
1

(a) If we divide the closed interval [1,2] into n equal-length subintervals what is the
width, Ax, of each subinterval?

(b) Draw a sketch of the function y = x? on the closed interval [1,2]. Construct

rectangles with width Az and height f(z}) where z} is the right-endpoint of the
1th subinterval.

(¢) Now write down the finite Riemann sum by writing an expression for the area of
the n rectangles. Use the identities above to show that the area of n rectangles is
given by:

n+1 2 +3n+1
+ .

1
+ n 6m2

(d) Take the limit as n — oo to evaluate the integral.

3. Use the same method & steps to evaluate the following:

1
/x?’da:.
0
b
/2dx.
ab
/xdx.

In the last two integrals a, b € R with a < b.

Project 2: Further Techniques of Trigonometric Integration

In this project you explore trigonometric substitutions for integrands containing square root
expressions such as Va2 — 22, V22 — a2 and Va2 + 22 where a € R is always a positive
constant. Recall Pythagoras Theorem:

In a right-angled triangle, the square of the hypotenuse is equal to the sum
of the squares of the other two sides.

Also, for all angles, sin® A+cos? A = 1. Also recall the integration of trigonometric functions
and of the inverse trigonometric functions from this chapter. Finally note that sec A =

1/ cos A.

Note that you are free to collaborate with each other and use references but this must
be indicated on your hand-up. Evidence of copying or plagiarism will result in divided
marks or no marks. You will not receive diminished marks for accredited collaboration or
referencing although I demand originality of presentation. 1f you have a problem interpreting
any question feel free to approach me, comment on the webpage or email.

1. Use Pythagoras Theorem to draw right-angled triangles with side lengths:

a) x, a, VI?+ a2
(a) =, a, v
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2. The general method here is depending on which of the square root forms occurs in
the integrand, we define an angle 6 # 7/2 by letting £ = sin /tan /secf. Find the
appropriate angle/substitution for cases (a), (b) and (c).

3. Consider the integral /x3x/4 — x2dx.
(a) Draw the triangle for the substitution
T —sino.
2

(b) Does this substitution agree with your answer to question 27

(c) Show that we can re-write the integrand using this substitution as

/(8 sin® 0)(2 cos 0)(2 cos 0 df)) = 32 / sin® 0 cos® 0 df.

(d) Use the techniques of this chapter (and not differentiation) to show that, in terms

of 6, this evaluates to
cos®f  cos’ 0
—32 — C.
(5 -5)

(e) Now use the triangle from part (a) to show that

/x?’Md:ﬂ — 39 ((4 i M G $2)5/2) +C

24 160
where (4 — 22)3/% = ((4 — 22)/?)3 = (V4 — 22)? etc.

Note that if the integral in terms of § contained a 6, then all we could say about
0 is that it is the angle whose sin is z/2:

0 = arcsin(z/2). (7)

This kind of idea will be required below, namely in the second integral where 6
will have to be called arcsec(z/3).

4. Use the same method & steps to show that

dx 1 x
| = i o )
i iarcsec (§> + i—xQ —9
3 18 22

N R
[HINT]: You will need the identities cos? A = (1+cos2A)/2 and sin 24 = 2sin A cos A.

+ C', where z > 3. 9)
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Project 3: The Natural Exponential Function as a Power Series
and The Most Beautiful Formula in Mathematic

In this project we pre-empt elements of MS 3003 by defining the natural exponential function
as a power series. Then we go further and see a beautiful formula involving all of 1, 0, 7, e

and ¢ = y/—1. Define a function f: R — R by
x> 2
f(x):1+:c+§+§+~-- (10)
-2 (1
n=0

This is an infinite power series. Of course many infinite series do not make any sense. For
example,

1+1+141+4---
o0
is nonsense. An infinite series Z a, is said to converge if
n=0
R
g, D an (12

is a converges.

Note that you are free to collaborate with each other and use references but this must
be indicated on your hand-up. Evidence of copying or plagiarism will result in divided
marks or no marks. You will not receive diminished marks for accredited collaboration or
referencing although I demand originality of presentation. If you have a problem interpreting
any question feel free to approach me, comment on the webpage or email.

1. Let a € R be non-zero and » € R be constants. Consider a finite geometric series of
R terms.
S=a+ar+ar’+ar®+ - +ar® (13)

It can be shown that if |r| < 1 then an infinite geometric series is convergent (to
a/(1—r)). A theorem called the Ratio Test says that if an infinite series is eventually
geometric then it’s convergence is the same as that of an infinite geometric series:

0.0.1 Ratio Test

o0
Suppose S = E a, is an infinite series and
n=0
. Qp+1
lim =
n—oo (07%

Then if r < 1 the series converges.

Ap+1

In the case of (11), we have a, = 2"/n!l. Evaluate for  # 0 and write an

n
expression for its absolute value.
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2. Now show that, for any = € R,

lim
n—oo

Ap+1
Qnp,

=0.

3. Explain, using the Ratio Test, why this implies that f(x) is defined for all z € R.

4. Assuming that we can differentiate term-by-term show that

d
%f(:v) =

[ @)

Note that this implies that

/().

() + C.

[HINT: It might be better to use (10) — this is actually in your MS 2001 notes]

5. Show that f(0) = 1. Use this and part 4. to show that f is strictly increasing at 0 and
explain with the aid of a sketch why this suggests that f(x) is strictly increasing for
all z > 0. In fact, it can be shown that f(z) > 0 and strictly increasing for all € R.

Hence it has an inverse function f~

6. In fact f(x) = e* and f~1(x)
with that of this chapter?

7. Now we go complex and consider e?

i = +/—1. Hence

Y(x):

= log,(z). How does the approach of this project contrast

(0,00) — R.

(which we are still defining via (11)). Note that

i"=1
1=1
i?=—1
i3 =—i
it =1

" =1 ete.

Use this and (10) to show that the first nine terms of the series expansion of ¥ can

be written as:

02 6t 6"
( 2l "4l 6l

08 6 0> 0
Y (02

(14)

8. You will see next year that the series in the brackets, if continued, are actually those

of cosf and sin § so we have:

10

e

= cosf +isinf.

(15)

Let = m and derive the (arguably) most beautiful formula in all of mathematics:

™4+ 1=0.

(16)
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Project 4: The Area & Volume of familiar Shapes & Solids

Here we derive most of the area and volume formulas in the tables. Please use the tables
to ensure you are getting the correct answers! Note that the real numbers b, h and r are
constants and should be treated as such when integrating; i.e. they can be pulled out in
front of the integral sign.

Note that you are free to collaborate with each other and use references but this must

be indicated on your hand-up. Evidence of copying or plagiarism will result in divided
marks or no marks. You will not receive diminished marks for accredited collaboration or
referencing although I demand originality of presentation. If you have a problem interpreting
any question feel free to approach me, comment on the webpage or email.

1.

h
Sketch the function ¢(x) = 7% for 0 < x < b. Integrate t(x) from 0 to b. What does

this represent?

. A circle of radius r (and centre at the origin) is a curve with equation

2 +yt =1’ (17)

Alternatively, the circle is got by gluing together the graphs of two functions u(x) =
+v/12 — 22 (upper semicircle) and I(z) = —v/7? — 22 (lower semicircle — both defined
for —r < x <r). Hence sketch u(z) for —r <z <r. Integrate u(x) from 0 to 7.

[HINT: Use the substitution # = rsin# and recall that 1 — sin® A = cos? A, cos? A =
(14 cos2A)/2 and sin2A = sin Acos A. Be careful with your limits — you can only
use the limits 0 and r when you have transformed back to z. To transform from 6 to
x note that € is the angle whose sin is z/r — 6 = arcsin(z/r). Finally it can be shown

that cos@ = /r? — x2/r.]

What does this represent? Hence find the area of a circle of radius r.

Sketch the constant function ¢(z) = r for 0 < x < h. What solid is generated when
this curve is rotated about the z-axis? Find the volume of this solid by using a formula
from the notes. What is ‘dodgy’ about using this particular formula to calculate this
volume?

Sketch the function g(z) = %x for 0 <z < h. What solid is generated when this curve

is rotated about the z-axis? Find the volume of this solid by using a formula from the
notes.

. Again sketch u(z) for —r < 2 <r. What solid is generated when this curve is rotated

about the z-axis? Find the volume of this solid by using a formula from the notes.

Project 5: Euler’s Method of Numerical Solution of Differential
Equations

Here we develop a method of numerically solving first order differential equations of the form

d
% = F(z,y) given that y(zo) = yo. (18)
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We must realise that although not all functions have anti-derivatives, most nice differential
equations have solutions. Here we find numerical approximations to such solutions.

Note that you are free to collaborate with each other and use references but this must
be indicated on your hand-up. Evidence of copying or plagiarism will result in divided
marks or no marks. You will not receive diminished marks for accredited collaboration or
referencing although I demand originality of presentation. 1f you have a problem interpreting
any question feel free to approach me, comment on the webpage or email.

1. Consider the differential equation

d
ﬁ =2z +y given that y(0) = 1. (19)

d
with solution y(z). What does d—y here represent?
T

2. Euler realised that if you knew the slope of the solution and the initial condition you
could approximately sketch the solution. The following is a graph of the slope field of
the above differential equation.

PR N f 1 ? f
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N = s 4 4 4 4 (4 A4 4 A A
A N » . g 4 4 O 4 4 A4 a4
A A N = 4 4 4 ? « 4 4 A4 A4 4
AN e oy « 4 4 4 4 4 A
T N T T R A A B B 1
T N ¢ 4 4 4 4 4 A
P U W N v ¢ 4 4 4 4 A

Figure 1: Copy or photocopy this to your handout. Starting at y(0) = 1, follow the slope
field and sketch the solution.

3. The basic idea behind slope fields can be used to find numerical approximations to
solutions of differential equations. We develop the methods on the differential equation
(19). The differential equation tells us that y'(0) = 0+ 1 = 1, so the solution curve
has slope 1 at the point (0,1). As a first approximation to the solution we could use
the linear approximation y = x + 1. In other words we could use the tangent line at
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(0,1) as a rough approximation to the solution curve. Euler’s idea was to improve
on this approximation by proceeding only a short distance along this tangent line and
then making a correction by changing direction according to the slope field. Euler’s
method says to start at the point given by the initial value and proceed in the direction
indicated by the slope field. Stop after a short space — the step size — look at the
slope at the new location, and proceed in that direction. Keep stopping and changing
direction according to the slope field. Euler’s method does not produce an exact
solution to the differential equation — it gives approximations. But by decreasing the
step size (and therefore increasing the amount of corrections), we obtain successively
better approximations to the correct solution. Set up the problem for (19) by sketching
the interval [0, 3] onto a plane with an z- and y-axis such that [0, 3] is divided into six
equal subintervals. Make sure that the y-axis continues up to at least y = 3. This
yields a step size of h = 0.5.

4. Draw a line segment of slope 1 from x = 0 to x = 04+ h = 0.5. Show using the
coordinate geometry of the line or otherwise that this line segment has y-value 1.5 at
x = 0.5.

5. At z = 0.5 the slope of the solution to (19) is given by %/(0.5) = 0.5 + 1.5 = 2. Now
draw a line segment of slope 2 from z = 0.5 to x = 0.5+ h = 1. Show using the
coordinate geometry of the line or otherwise that this line segment has y-value 2.5 at
x = 1. Compare this with your graphical solution.

6. Note that we have gotten three coordinates on the graph of the approximate solution
to (19), namely:

(ZE(),yo) = (0, ].), (ZEl,’yl) = (05, 15), ($27y2) = (1, 25)

Show that the method we used here is the same as Euler’s Method:

0.0.2 Euler’s Method

Suppose that

Z—i = F(z,9), y(zo) = wo (20)

is a differential equation. If we are using Euler’s Method with step size h
then

Y(Tns1) R Yny1 = Yo + hF (T, yn) , for n > 0. (21)

i.e. show that the sequence of coordinates (xo, ¥o), (z1,%1), (22, y2) is generated by this
method. Note we have h = 0.5 and F(z,y) =z +y.

7. Hence approximate the solution to (19) at © = 3. How might this approximation be
improved (assuming we can’t solve the differential equation analytically — which we
actually can in this case)?
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Project 6: The Length of the Monza Circuit

In this project we estimate the length of Monza Circuit by numerical integration techniques.
Note that of all the ‘projects’ this is the one most open to your own ideas.

Note that you are free to collaborate with each other and use references but this must
be indicated on your hand-up. Evidence of copying or plagiarism will result in divided
marks or no marks. You will not receive diminished marks for accredited collaboration or
referencing although I demand originality of presentation. If you have a problem interpreting
any question feel free to approach me, comment on the webpage or email.

1. Consider the triangle in the graph of position, s(¢); vs time, ¢ on the next page. Show
that the length of the perpendicular height is As = s(2) — s(1). Clearly the length of

A
the base At = 1. What does the quantity Kj represent?
2. What does the quantity
As  ds

A = (22)

represent?

position

time

3. Let v(t) be the velocity /speed of a particle. Explain why

4. Therefore if we know the speed of a particle is described by a function v : R — R then
we can calculate the distance travelled between times ¢; and 5 by

/ " o) d. (23)

Consider the following data:

From this data, estimate the length of Monza’s track. Note that the seconds will have
to be converted to hours first. Find out the length of Monza’s track and compare your
answer with this. Comment on the accuracy.
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Time/ s Speed/ kmph

Timef s Speed/ kmph

o
3
10
15
20
23
30
33
40

325
327
0o
236
299
327
155
200
200

45
20

25
60
65
70

73
80

275
322
190
280
321
199
266
315

10

Figure 2: This data has been taken from a video on the internet. It is footage of a flying
lap by Sebastian Vettel of the Monza racetrack in Italy. I paused the video at intervals of 5

seconds and recorded the driver’s speed at these times.



