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0.1 Introduction

Lecturer

J.P. McCarthy

Office

Meetings before class by appointment via email only.

Email & Web:

jpmccarthymaths@gmail.com and http://jpmccarthymaths.wordpress.com

This page will comprise the webpage for this module and as such shall be the venue for
course announcements including definitive dates for the tests. This page shall also house
such resources as links (such as to exam papers), as well supplementary material. Please note
that not all items here are relevant to MATH6015; only those in the category ‘MATH6015’.
Feel free to use the comment function therein as a point of contact.

Module Objective

This module introduces differential and integral calculus and treats applications pertinent
to the student discipline.

Module Content

Differentiation

Introduction to limits. Definition and graphical interpretation of a derivative. Differenti-
ation of common functions using the product, quotient and chain rules. Applications of
differentiation.

Integration

Integration as anti-differentiation. Evaluation of standard integrals using table look-up and
the method of substitution. Applications of the definite integral. Solutions of first-order
differential equations.

Assessment

Total Marks 100: End of Year Written Examination 80 marks; Continuous Assessment 20
marks.
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Continuous Assessment

The Continuous Assessment will be comprised of a one-hour written test worth 20%, in week
6.
Absence from a test will not be considered accept in truly extraordinary cases. Plenty of
notice will be given of the test date. For example, routine medical and dental appointments
will not be considered an adequate excuse for missing the test.

Lectures

It will be vital to attend all lectures as many of the examples, proofs, etc. will be completed
by us in class.

Tutorials

The aim of the tutorials will be to help you achieve your best performance in the tests and
exam.

Exercises

There are many ways to learn maths. Two methods which arent going to work are

1. reading your notes and hoping it will all sink in

2. learning off a few key examples, solutions, etc.

By far and away the best way to learn maths is by doing exercises, and there are two main
reasons for this. The best way to learn a mathematical fact/ theorem/ etc. is by using it in
an exercise. Also the doing of maths is a skill as much as anything and requires practise.
There are exercises in the notes for your consumption. The webpage may contain a link to a
set of additional exercises. Past exam papers are fair game. Also during lectures there will
be some things that will be left as an exercise. How much time you can or should devote to
doing exercises is a matter of personal taste but be certain that effort is rewarded in maths.

Reading

Your primary study material shall be the material presented in the lectures; i.e. the lecture
notes. Exercises done in tutorials may comprise further worked examples. While the lectures
will present everything you need to know about MATH6015, they will not detail all there is
to know. Further references are to be found in the library. Good references include:

• P. Tebbutt 1998, Basic Mathematics, John Wiley & Sons

• J.O.Bird 2005, Basic Engineering Mathematics, 4th Ed., Newnes

The webpage may contain supplementary material, and contains links and pieces about
topics that are at or beyond the scope of the course. Finally the internet provides yet
another resource. Even Wikipedia isn’t too bad for this area of mathematics! You are
encouraged to exploit these resources; they will also be useful for further maths modules.
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Exam

The exam format will roughly follow last year’s. Acceding to the maxim that learning off a
few key examples, solutions, etc. is bad and doing exercises is good, solutions to past papers
shall not be made available (by me at least). Only by trying to do the exam papers yourself
can you guarantee proficiency. If you are still stuck at this stage feel free to ask the question
come tutorial time.
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0.2 Motivation: Rates of Change, Tangents to Curves

& The Problem of Measure

Although this may seem a paradox, all exact science is dominated by the idea of
approximation.

Bertrand Russell
Just to give a structure to the module, we will talk about what we want to achieve in this
module. We will talk in the loosest terms possible — and won’t get bogged down in too
much detail.

0.2.1 Revision: Functions

We should have all have a passing acquaintance with the idea of a function. Suppose A is
one collection of objects, and B is another collection. A function is like a map between A
and B:

We can think of A as the collection of inputs, and B the collection of outputs. When we
write f : A → B we mean that f is a function from A to B. In this module the collections
we are interested in are collections of numbers. For example the real numbers (i.e. the
numbers on the numberline) — and we are interested in functions — or maps — that send
real numbers to real numbers. As an example, the function f(x) = x2 takes a real number
input — and the output is that real number squared. This is a purely algebraic picture, but
we can also consider it in the geometric picture1.

1and one of the major themes of modern mathematics is thus. See more:
http://irishjip.wordpress.com/2011/03/14/my-understanding-of-non-commutative-geometry/
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We can look at the graph of a function:

1 2 3
x = input

1
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9

f HxL=output

Figure 1: To plot the graph of a function — the collection of pairs (x, f(x)) as x runs over
all the real numbers — you examine the outputs for various inputs.

Examples

x

f HxL

Figure 2: A constant function, e.g. f(x) = 1.
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x

f HxL

Figure 3: The line f(x) = x is strictly increasing.
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Figure 4: The cos function is strictly increasing on [π, 2π] and symmetric about the y-axis.
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Figure 5: The sin function is strictly increasing on [−π/2, π/2] and antisymmetric about the
y-axis.

x

f HxL

Figure 6: The function f(x) = x2 is strictly increasing on [0,∞) and symmetric about the
y-axis.
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x

f HxL

Figure 7: The function f(x) = x3 is increasing everywhere and antisymmetric about the
y-axis.

x

f HxL

Figure 8: The function f(x) = x4 is similar to the quadratic function in that it is symmetric
about the y-axis and increasing on [0,∞)
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Remark

Suppose the graph of y = f(x) is known. Then the graph of y = f(x) + a is simply found
by shifting the curve a units upwards (or indeed downwards if a is negative).

0.2.2 The Line

We need to have a very good handle on the line. A line of slope m ∈ R and y-intercept has
equation:

What this means is that every point on the graph of l(x) has coordinates (x,mx + c) for
some x ∈ R. Conversely2, every function of the form f(x) = ax + b is a line of slope a and
y-intercept b.

Examples

x

f HxL

0.2.3 The Quadratic Function: Definition

For a, b, c ∈ R, a ̸= 0, any function f : R → R of the form:

f(x) = ax2 + bx+ c (1)

is a quadratic function.

0.2.4 Definition

The roots of a function are:
{k ∈ R : f(k) = 0} (2)

i.e. the numbers when imputed into f produce 0, or where the graph of f cuts the x-axis.

2Conversely means on the other hand. [Ex]: The justification of these facts to yourself are left as an
exercise.
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0.2.5 Proposition

The roots of (1) are given by:

x± =
−b±

√
b2 − 4ac

2a
(3)

Remark

1. It can be shown that every quadratic is simply a translation of x2 and so must have
shape

∪
or

∩
.

2. Note that a quadratic is symmetric in the line x = b/2a and indeed attains its minimum
at this point. Suppose x gets ‘big’. When x is ‘big’ ax2 ≫ bx ≫ c so that the function
looks more and more like ax2. If a > 0 the quadratic has shape like x2 (

∪
). If a < 0,

f(x) looks like an upside down x2 (
∩
).

3. Examining (3), note that if b2 − 4ac < 0 then there is no (real) number equal to√
b2 − 4ac as a real number squared is always positive. The roots are complex. In this

case the graph of f does not cut the x-axis at any point:
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f HxL

Figure 9: The function f(x) = x2 − x+ 4 has no real roots.



MATH6015 — Technological Maths 2 12

If b2 − 4ac = 0 then the roots are real and equal,

x =
−b± 0

2a
=

b

2a

In this case the graph has as a tangent the x-axis:
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Figure 10: The function f(x) = x2 − x+ 1/4 has two equal, real roots.

Finally if b2 − 4ac > 0 then the roots are real and distinct. In this case the function
cuts the x-axis at two points:
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f HxL

Figure 11: The function f(x) = x2 − 4x+ 1 has two distinct, real roots.
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Exercises

1. True-False Quiz: Determine whether the statement is true or false. If it is true, explain
why. If it is false, explain why. If it is false, explain why or give an example that
disproves the statement.

(a) If f is a function, then f(s+ t) = f(s) + f(t).

(b) If f(s) = f(t) then s = t.

(c) If f is a function, then f(3x) = 3f(x).

2. An airplane flies from an airport and lands an hour later at another airport, 400 miles
away. If t represents the time in minutes since the plane has left the terminal building,
let x(t) be the horizontal distance travelled and y(t) be the altitude of the plane.

(a) Sketch a possible graph of x(t).

(b) Sketch a possible graph of y(t).

(c) Sketch a possible graph of the ground speed.

(d) Sketch a possible graph of the vertical speed.

3. If f(x) = 3x2 − x + 2, find f(2), f(−2), f(a), f(−a), f(a + 1), 2f(a), f(2a), f(a2),
[f(a)]2 and f(a+ h).

4. A spherical balloon with radius r inches has volumes V (r) =
4

3
πr3. Find a function

that represents the amount of air required to inflate a balloon from a radius of r inches
to a radius of r + 1 inches.

5. A rectangle has perimeter 20 m. Express the area of the rectangle as a function of the
length of one of its sides.

6. A taxi company charges two euro for the first mile (or part of a mile) and 20 cent for
each succeeding tenth of a mile (or part). Sketch the cost function C (in euros) of a
ride as a function of the distance x travelled (in miles) for 0 < x < 2.

7. (a) Find an equation for the family of lines with slope 2 and sketch several members
of the family.

(b) Find an equation for the family of lines such that f(2) = 1 and sketch several
members of the family.

(c) Which line belongs to both families.

8. The relationship between the Fahrenheit (F) and Celsius (C) temperature scales is

given by the line F =
9

5
C + 32.

(a) Sketch a graph of this function.

(b) What is the slope of the graph and what does it represent.



MATH6015 — Technological Maths 2 14

0.2.6 Smooth Functions

A good question — although a difficult one — is which functions have a smooth graph?

x

f HxL

Figure 12: A graph of a smooth function and a non-smooth function. When I say smooth I
mean that the graph of the function has no discontinuities or jagged edges.

What we can see is that a function has the property of being smooth if it has a well-defined
tangent at each point. We will become very interested in the slope of the tangent.

x

f HxL

Figure 13: Only at point a does the graph of the function have a well defined tangent. At
point b there are many tangents — and at c we can’t even draw a tangent.

So smooth functions are basically those that are continuous with a nicely varying slope.
Given a function f(x), is it possible to estimate the slope of the tangent at a point a say?
Now slope is nothing but the ratio of ↑ to → so we can say that the slope of the tangent is
estimated by:
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x

f HxL

Figure 14: We can estimate the slope of the tangent at a by looking at the slope of the
secant.

Now what we can do, is take h to be smaller and smaller — in fact look at the limit as h
tends to zero. As h gets smaller and smaller, our estimate is getting better and better. We
have then that the slope of the tangent is given by:

But be careful — h cannot equal zero. This is going to be a feature of limits — we will
be interested in what happens when a number approaches another number — we don’t care
about what happens at that number. What happens here at h = 0? This expression here is
the familiar derivative, and we write:

DON’T FORGET THIS!
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0.2.7 Rates of Change

If you watch the speedo of a car, it is clear that the speed of the car is not constant. The
speedo seems to tell is that the car has a definite speed at each moment: but how is the
‘instantaneous’ speed defined?

Suppose we take a car out on a test track and record it’s distance along a straight as a
function of time:

1 2
time

position

Figure 15: What is the speed of the car after 1 s?

Consider the triangle in the graph of position, s(t); vs time, t. We can use this to find an
average speed. The perpendicular height is ∆s = s(2)− s(1). Clearly the length of the base
∆t = 1. Now how do we define average speed?

Therefore from t = 1 to t = 2 the car’s average speed is given by

The difficulty in finding the speed after 1 s is that we are dealing with a single instant of
time (t = 1), so no time interval is involved3.

3see the Arrow Paradox
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However we can approximate the desired quantity by computing the average velocity over a
brief time interval of say a tenth of a second:

If we examine this geometrically it appears that the average speed over smaller and smaller
intervals is becoming closer to a certain value... the slope of the tangent at t = 1.

x

f HxL

What does the quantity

lim
∆t→0

∆s

∆t
=

ds

dt
(4)

represent?

So speed is nothing but the derivative of position. By noting that speed is the rate of change
of distance we can by analogy pretty much see the following.

Important Fact

Suppose that F (x) is some variable then the rate of change of F (x) with respect to x is given
by

F ′(x) =
dF

dx
.
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The speed of a particle is the rate of change of distance with respect to time. Physicists
are interested in other rates of change as well — for instance, the rate of change of work
with respect to time (which is called power). Chemists who study a chemical reaction are
interested in the rate of change in the concentration of a reactant with respect to time (called
the rate of reaction). A steel manufacturer is interested in the rate of change of the cost of
producing x tonnes of steel per day with respect to x (called the marginal cost). A biologist
is interested in the rate of change of a the population of a colony of bacteria with respect to
time. In fact, the computation of rates of change is important in all of the natural sciences,
in engineering, and even in the social sciences. All these rates of change can be interpreted
as slopes of tangents. This gives added significance to the solution of the tangent problem.

0.2.8 The Problem of Area

The theme of the second chapter is arguably how to assign a size to certain sets — usually
shapes. Let’s have a closer look at areas:

An even more flexible shape than the rectangle is the triangle:

Triangles are actually more basic than rectangles since we can represent every rectangle, and
actually and odd-shaped quadrangle, as the ‘sum’ of two non-overlapping triangles:
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In doing so we have tacitly assumed a few things. For the triangles we have chosen a
particular base line and the corresponding height arbitrarily. But the concept of area should
not depend on such a choice and the calculation this choice entails. Independence of the
area from the way we calculate it is called well-definedness. Plainly,

Notice that this allows us the most convenient method to work out in the area. In calculating
the area of a quadrangle we actually used two assumptions:

• the area of non-overlapping (disjoint4) sets can be added, i.e.

• congruent triangles have the same area5.

The above rules allow us to measure arbitrarily odd-looking polygons6 using the following
recipe: dissect the polygon into non-overlapping triangles and add their areas. But what
about curved or even more complicated shapes, say,

4empty intersection
5[Ex:] argue using the idea of congruent triangles why the area should be half the base times the perpen-

dicular height — this argument here takes the area of a triangle as fundamental
6a figure formed by three or more points in the plane joined by line segments
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Here is one possibility for the circle: inscribe a regular j-sided polygonal7 into the circle,
subdivide it into congruent triangles, find the area of each of these slices and then add all j
pieces:

Figure 16: The area of the circle is approximated by triangles. Note the similarity with
differentiation — we approximate the slope of the tangent and then take a limit. Here we
repeat the trick.

In the next step increase j → j + 1 by increasing by one the number of points on the
circumference and repeat the above procedure. Eventually8,

Again, there are a few problems: does the limit exist? Is it submissible to subdivide a set into
arbitrarily many subsets — each of vanishingly small area? Is the procedure independent of
the particular subdivision? In fact, nothing should have stopped us from paving the circle
with ever smaller squares! For a reasonable notion of area measure the answer to these
questions must be assumed to be yes. It can be show that an area measure satisfying all
these conditions is powerful enough to cater for all our everyday needs and for much more.

7made from points spaced at an equal distance around the circle
8[Ex]: find this limit by approximating the bases by the arc-length between each point — and the

perpendicular height by the radius, r.
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This good notion of area measure allows us to introduce integrals, basically starting with
the näıve (but valid) idea that the integral of a positive function should be the same as the
area of the set between the graph of the function and the x-axis:

x

f HxL

Figure 17: We shall define the object

∫ b

a

f(x) dx as the area A.

Exercises

1. Estimate the area under the graph f(x) = 1/x from x = 1 to x = 5 using four
approximating rectangles. Sketch the graph and the rectangles. Is your answer an
underestimate or overestimate.

2. Estimate the area under the graph f(x) = 25 − x2 from x = 0 to x = 5 using five
approximating rectangles. Sketch the graph and the rectangles. Is your answer an
underestimate or overestimate.



Chapter 1

Differentiation

In the fall of 1972 President Nixon announced that the rate of increase of inflation
was decreasing. This was the first time a sitting president used the third derivative
to advance his case for reelection.

Hugo Rossi

1.1 Limits

Suppose we have a function f : R → R with a hole discontinuity at a ∈ R as shown:

x

f HxL

Figure 1.1: Although it appears that f(a) = L, this in fact cannot be the case as f is
undefined at a: for the input a an output does not exist.

We can see in some way that as the inputs get closer and closer to a, that the outputs get
closer and closer to L and informally at this stage we would write:

22
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Remarks

1. If L is the limit of f as x tends to a then we write

or f(x) → L as x → a.

2. We do not require that f(a) = L: indeed we do not even require that f(a) be defined.

3. If the limit exists then it is unique - but it need not exist.

1.1.1 Proposition (Calculus of Limits)

Suppose that f and g are two functions R → R, and that for some point a ∈ R we
have

lim
x→a

f(x) = p , and lim
x→a

g(x) = q.

for some p, q ∈ R. Then

(i) limx→a(f(x) + g(x)) = p+ q.

(ii) If k ∈ R, limx→a kf(x) = kp.

(iii) limx→a(f(x)g(x)) = pq.

(iv) If q ̸= 0, limx→a(f(x)/g(x)) = p/q.

(v) If n ∈ N, and p > 0 then limx→a
n
√

f(x) = n
√
p.

In everyday English:

• the limit of a sum is the sum of the limits.

• the limit of a constant times a function is the constant times the limit of the function.

• the limit of a product is the product of the limits.

• the limit of a quotient is the quotient of the limits.

• the limit of a root is the root of the limit.

1.1.2 Proposition

Suppose f and g are functions for which f(x) = g(x) for all x ̸= a. If limx→a f(x)
exists then so does limx→a g(x), and moreover limx→a f(x) = limx→ g(x).

Remark

Along with the calculus of limits above this fact is all we need to evaluate any limits we will
encounter in MATH6015.
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x

f HxL

Figure 1.2: This is another geometrically plausible fact that we can prove. It’s importance
can be seen below.

Examples

1. Evaluate lim
x→5

(2x2 − 3x+ 4).

Solution: Here we can just plug in x = 5 as

2. Find the value of lim
x→1

x− 1

x2 − 1
.

Solution: If we put in x = 1 we get 0/0 which is undefined. So we are going to have
to look at x ̸= 1. Let us simplfy in this region:

Now take the limit

3. Evaluate lim
h→0

(3 + h)2 − 9

h
.

Solution: Plugging in h = 0 is not allowed here as this would be division by zero...
Hence we look at ‘f(h)’ for h ̸= 0:
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Now we can just plug in h = 0:

So we can see our technique is going to be:

1. plug in the point. If this doesn’t work:

2. simplify the function and plug in the point.

Exercises:

1. Evaluate the limit

(a) lim
x→−2

(3x4 + 2x2 − x+ 1)

(b) lim
t→−1

(t2 + 1)3(t+ 3)5

(c) lim
x→4−

√
16− x2

Selected Answer: (iii) 0

2. Evaluate the limit

(a) lim
x→−4

x2 + 5x+ 4

x2 + 3x− 4

(b) lim
t→−3

t2 − 9

2t2 + 7t+ 3

(c) lim
x→1

x3 − 1

x2 − 1

(d) lim
x→2

x4 − 16

x− 2

Selected Answer: (iii) 3
2
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1.2 The Derivative

In a rough sense, a function is smooth if it has a well-defined tangent at each point:

x

f HxL

Figure 1.3: We want to develop an algebraic picture of what a smooth function looks like.

We have actually discussed this issue in the Motivation, so we will move right into the
definition.

1.2.1 Definition

A function f : R → R is smooth at a ∈ R if

In general we deal with smooth-everywhere functions and instead use x ∈ R:

f ′(x) is the derivative of f(x). If f ′(x) exists for all x ∈ R, then f(x) is said to be smooth.
In this case, f ′ : R → R is a new function.

Remark

The derivative of f(x) is denoted f ′(x). Other names for the derivative of f(x) include:

• the differentiation of f(x)

• the derived function for f(x)

• the slope of the tangent at (x, f(x))

• the gradient

• df

dx
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There is an alternate and superior notation to that of ‘f’(x)’. This is the Leibniz notation1.
If we zoom in on a curve:

we see that the slope of the secant is:

This ∆ is the capital of the Greek letter delta — and it usually signifies ‘a change in’. When
we make h (morryah ∆x) small, ∆f will also get small and we end up using

where the capital ‘D’s and turned into little ‘d’s. Given a function y = f(x), there is no
difference between f ′(x) and dy/dx.
To reiterate if y = f(x); then dy/dx is the same thing as:

• the derivative of f(x)

• the differentiation of f(x)

• the derived function for f(x)

• the slope of the tangent at (x, f(x))

• the gradient

• f ′(x)

1.3 Differentiation of Common Functions

The equation of a line of slope m, and y-intercept c is l(x) = mx + c. What is the tangent
to a line?

1The derivative was independently developed by Isaac Newton and G.W. Leibniz. The ‘f’(x)’ notation is
Newton’s.
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1.3.1 Proposition

If l : R → R is a straight line of slope m, given by l(x) = mx+ c, then l′(x) = m.

Proof.

As we expect. What is the slope of a constant function?

Example

Define f : R → R by f(x) = x2 + 5x+ 2. Find f ′(x).

Solution:

Winter 2010: Question 2(a)

Differentiate y = 4x2 − 3x+ 3 from first principles.

Solution: Here we just have to use the formula that we derived in the motivation:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (1.1)
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A good idea is to take your time. From the discussion on notation we should know that
y = y(x) = f(x). First we calculate f(x+ h):

Now we take away f(x) = 4x2 − 3x+ 3 to find f(x+ h)− f(x):

Now divide by h to get
f(x+ h)− f(x)

h
:

Finally we take the limit as h → 0 to find to find the derivative

Winter 2011: Question 2(a)

Differentiate y = 3x− 3x2 from first principles.

Solution: Let f(x) = 3− x− 3x2. We calculate

Now divide by h to get
f(x+ h)− f(x)

h
:

Finally we take the limit as h → 0 to find to find the derivative
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Exercises: Differentiate each of the following with respect to x from first principles:

(i)x2 − 2x+ 5 (ii)x2 + 5x (iii) 3x+ 2

(iv) 2x2 − 5x (v) 2x− x2

Selected Answer: (iii) 3

1.3.2 Proposition (Power Rule)

For each n ∈ Q, fn(x) = xn is differentiable on R with derivative f ′
n(x) = nxn−1.

Proof. The proof is split into a number of cases. For n ∈ N we can use either induction or
the binomial theorem. For negative n ∈ Z we can use the Quotient Rule, which we will see in
Section 1.4.2. Finally to prove it for genuine fractions n ̸∈ Z we use implicit differentiation,
which we won’t be covering in MATH6015 •

Remark

So for all integer powers, we can simply say, bring down the power, and lower the power by
1.

1.3.3 Linearity of Differentiation

Let f, g : R → R be functions. Then

(i) f + g has derivative (f + g)′(x) = f ′(x) + g′(x) [Sum Rule].

(ii) For k ∈ R, kf has derivative derivative (kf)′(x) = kf ′(x).

Remark

In the Leibniz notation,

Examples

1. Find f ′(x) where
f(x) = x17 − 3x8 + 4x5.

Solution:
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2. Find g′(x) where

g(x) = x7 +
1

x2
− 5

x10
.

Solution: To differentiate, write g slightly differently — all in terms of powers of x:

3. Find h′(x) where
s(x) =

√
x.

Solution: Can we write
√
x as a power...

4. Differentiate
√
x3 with respect to x.

Solution: Again write the function a power of x if possible:

Winter 2010: Question 1 (a)

Differentiate by rule y = x5 − 2
√
x+

4

x
.

Solution: First we write everything as powers of x:

Now we use linearity to differentiate term-by-term:
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Winter 2010: Question 2(b)(i)

Differentiate by rule y = 3x4 +
2

x4
+ 5

√
x+ 6.

Solution: Same again rewrite the function:

and differentiate

Exercises:

1. Differentiate the function

(i) f(x) = 5x− 1 (ii) g(x) = 5x8 − 2x5 + 6 (iii)V (r) = 4
3
πr3

(iv)R(x) =
√
10
x7 (v) y = x−2/5 (vi) g(u) = u

√
2 +

√
3u

Selected Answers: (iii) 4πr2 (vi)
√
2 +

√
3

2
√
u
.

2. Differentiate 2x5.

3. Differentiate 9 + 3x− 5x2 with respect to x.

4. Find the derivative of 4(3− x)2.

5. Differentiate (1 + 3x)2.

6. Differentiate x3 + 2
√
x.

7. Differentiate
√
x(x+ 2).

8. Differentiate (1 + 7x)3 with respect to x.

9. Differentiate Y (u) = (u−2 + u−3)(u5 − 2u2).

10. Find the equation of the tangent to y =
1

x
at the point

(
2,

1

2

)
.
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1.3.4 Proposition

(i) If f(x) = sinx, then f ′(x) = cosx for all x ∈ R.

(ii) If f(x) = cosx, then f ′(x) = − sinx for all x ∈ R.

(iii) If f(x) = tan x, then f ′(x) = sec2 x = (sec x)2 for all x ∈ R such that cos x ̸= 0.
(sec = 1/ cos)

(iv) If f(x) = ex =
∑∞

i=0 x
i/i!, then f ′(x) = ex for all x ∈ R. Note that ex > 0 for all

x ∈ R.

(v) If f(x) = log x, then f ′(x) = 1/x for all x > 0.

Proof. (i) Using the identity2:

sinA− sinB = 2 cos

(
A+B

2

)
sin

(
A−B

2

)
(1.2)

We can write sin(x + h) − sin x as a product of a cosine and sine. Then we use the
limit

lim
x→

sinx

x
= 1 (1.3)

to complete the proof.

(ii) Similarly to sin x except we use

cosA− cosB = −2 sin

(
A+B

2

)
sin

(
A−B

2

)
(1.4)

(iii) Now tan x = sin x/ cosx and then we use the Quotient Rule (Section 1.4.2).

(iv) We can actually define ex as the function f(x) which is equal to its own derivative
with f(0) = 1.

(v) We can also define log x as the function f(x) which has derivative 1/x for x > 0 with
f(1) = 0.

Remark

We might see the following notations:

These are all the same function.

Examples

1. Differentiate f(x) = x− 3 cos x.

2in the tables
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2. Find the equation of the tangent line to the curve y = tanx at the point (π/4, 1).

Solution: To write down the equation of a line we need either two points, or a point
and the slope. We have a point. How do we get the slope?

Now what is cos(π/4)?

Now we use the equation of the line formula:

y − y1 = m(x− x1) (1.5)

Exercises:

1. Differentiate y = sin x+ 10 tanx.

2. Find the equation of the tangent line to the curve y = x+ cos x at the point (0, 1).

3. For what values of x does the graph of f(x) = 2x3 + 3x2 − 36x+ 11 have a horizontal
tangent?
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1.4 Differentiating Products, Quotients and Composi-

tions

Adding functions together or multiplying a function by a constant are not the only ways of
generating new functions from old. For example we have products of functions:

and quotients of functions

How do we differentiate functions like these? By analogy with the Sum Rule, one might be
tempted to guess that the derivative of a product is the product of the derivatives, We can
see that this is wrong by looking at a particular example.

Example

Let f(x) = x and g(x) = x2. Calculate f ′(x)g′(x) and (fg)′(x).

Solution: Firstly we have f ′(x) = 1 and g′(x) = x2 so that f ′(x)g′(x) = x2. However

so we can say that, in general,

1.4.1 Proposition: Product Rule

Let f, g : R → R be smooth functions. Then fg is smooth with

(fg)′(x) = f ′(x)g(x) + f(x)g′(x) (1.6)

Or, in the Leibniz Notation
d(uv)

dx
= u

dv

dx
+ v

du

dx
(1.7)

Proof. We can prove this from first principles3, but there is also a way to see why the theorem
is true.

3see almost any reference with Calculus in the title
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We want to see how the product P (x) = f(x)g(x) changes when x changes by a small
amount. Hence we can look at the quantity

lim
∆x→0

∆P

∆x
= P ′(x) (1.8)

the derivative of the product. Here ∆P signifies a small change in P caused by a small
change in x, ∆x. Now when x changes by ∆x we have that f(x) and g(x) also change:

Now we examine what happens to f(x)g(x) when x is changed by ∆x:

That implies that the small change in P (x) = f(x)g(x) caused by the change in x, ∆x is
given by

∆P = f∆g +∆fg +∆f∆g (1.9)

Now we want to find
∆P

∆x
:

Now take the limit as ∆x → 0. If ∆x → 0 then both ∆f and ∆g go to zero also but the

ratios
∆f

∆x
and

∆g

∆x
go to f ′(x) and g′(x) respectively and we are left with

Remark

In words, the Product Rule says that the derivative of a product of two functions is the
first function times the derivative of the second function plus the second function times the
derivative of the first function.

Examples

1. Differentiate y = x2 sin x.

Solution: Using the Product Rule:

2. Differentiate f(x) = x2ex

Solution: Using the Product Rule
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3. Differentiate g(u) = sin u log(u).

Solution: Using the Product Rule

Exercises:

1. Differentiate f(x) = x sinx.

2. Differentiate y =
sin x

x2
. [HINT: Write y in the form xn sin x]

3. If f(x) =
√
x sin x, find f ′(x).

4. Differentiate y = ex(cosx+ 3x).

5. Differentiate f(x) =
√
x log x.

6. Differentiate y =
lnx

x2
.

7. Find the equation of the tangent line to the curve y = ex/x at the point (1, e).

8. Find the equation of the tangent line to the curve y = (x2 − 1) log(x) at the point
(1, 0).

1.4.2 Quotient Rule

What about quotients (fractions) of functions? We probably suspect, correctly, that the
derivative of a quotient is not given by the quotient of the derivatives.

1.4.3 Proposition: Quotient Rule

Let f, g : R → R be smooth functions. Then
f

g
is smooth for g(x) ̸= 0 with(

f

g

)′

(x) =
g(x)f ′(x)− f(x)g′(x)

[g(x)]2
(1.10)

Or, in the Leibniz Notation
d

dx

(u
v

)
=

v du
dx

− u dv
dx

v2
(1.11)

Proof. Once again, we can prove this from first principles4, but as in the product rule there

is also a way to see why the theorem is true. We want to see how the product Q(x) =
f(x)

g(x)
changes when x changes by a small amount. Hence we can look at the quantity

lim
∆x→0

∆Q

∆x
= Q′(x) (1.12)

4see almost any reference with Calculus in the title
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the derivative of the quotient. Here ∆Q signifies a small change in Q caused by a small
change in x, ∆x. Now when x changes by ∆x we have that f(x) and g(x) also change:

Now we examine what happens to
f(x)

g(x)
when x is changed by ∆x:

Now we look at the small change in Q(x) =
f(x)

g(x)
caused by the change in x, ∆x is given by

∆Q =
f +∆f

g +∆g
− f

g
(1.13)

Now we want to find
∆Q

∆x
:

Now take the limit as ∆x → 0 and we are left with

Examples

1. Differentiate y = x2+x−2
x3+6

.

Solution: First we find the derivatives of the top and bottom:
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Now we use the Quotient Rule:

Inasmuch as possible we should simplify our answers as much as possible:

2. Differentiate y =
x

cos x

Solution: First we find the derivatives of the top and bottom

Now we apply the Quotient Rule and simplify:

3. Differentiate y =
ex

1 + x

Solution: First we find the derivatives of the top and bottom
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Now we apply the Quotient Rule and simplify:

4. Differentiate f(t) =
1 + ln t

1− ln t

Solution: First we find the derivatives of the top and bottom

Now we apply the Quotient Rule and simplify:

Exercises:

1. Differentiate

g(x) =
3x− 1

2x+ 1
.

2. Differentiate

f(t) =
t3 + t

t4 − 2
.

3. Differentiate

y =
1

x4 + x2 + 1
.

4. Differentiate

y(t) =
t2

3t2 − 2t+ 1
.

5. Differentiate

y =

√
x− 1√
x+ 1

.

6. Where m is a constant, differentiate

f(x) =
mx

1 +mx
.

7. Differentiate
y =

x

x2 − 1
.

8. Differentiate

y =
1 + sin x

x+ cos x
.
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9. Differentiate

y =
ex + e−x

ex − e−x
.

10. Differentiate

f(u) =
log u

1 + log(2u)
.

[HINT: Use the identity log(ab) = log a+ log b to rewrite the bottom/denominator]

11. Find y′ where

y =
lnx

x2
.

12. If
f(x) =

x

lnx
,

find f ′(e).

13. Find the equation of tangent line to the curve

y =
2x

x+ 1

at the point (1, 1).

14. Find the equation of the tangent line to the curve

y =
1

sinx+ cos x

at the point (0, 1).

15. Find the derivative of the function

F (x) =
x− 3x

√
x√

x

by (i) simplifying first by writing in terms of powers of x and (ii) by using the Quotient
Rule.



MATH6015 — Technological Maths 2 42

1.4.4 Chain Rule

There are more ways to combine functions than adding, making products and quotients. We
also have compositions of functions. Recall that a function which assigns to each input a
unique output. A lot of the time, for example in this module, the inputs are real numbers
are real numbers and the outputs are also real numbers. That means that we could treat
the outputs of one function as the inputs of another. As an example consider the functions
f(x) = tan x and g(x) = ex:

Now the object that takes as input x and outputs etanx is a perfectly well-defined function.
We might call it h(x) = etanx. It is called the composition of f and g and we write:

It turns out the composition of two smooth functions is also smooth, and there is also a
formula for the derivative of a composition in terms of the constituent functions.

1.4.5 Proposition: Chain Rule

Let g, f : R → R be smooth functions, and let F denote the composition F = f ◦ g
(that is F (x) = f(g(x))). Then F is smooth with

F ′(x) = f ′(g(x))g′(x) (1.14)

Proof. Once again the proof from first principles is a bit beyond us but we can argue why
this formula makes sense.

Recall that we can interpret derivatives as rates of change. Regard
dg

dx
as the rate of change

of g with respect to x. That is if x changes by one unit, g(x) changes by

Now that
df

dg
is the rate of change of f(x) with respect to g(x), if g(x) changes by one unit,

f(x) changes by

Suppose that g(x) changes twice as fast as x so that
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and f(x) changes, say, three times as fast as g(x), then it is reasonable that F (x) = f(g(x))
changes six times as fast as x as this schematic shows:

Therefore we expect

dF

dx
=

df

dg

dg

dx
, or

F ′(x) = f ′(g(x))× g′(x).

Remark

In theory this sounds pretty straightforward. We have a function of the form

and the derivative is

Differentiate the ‘outside’ function at the ‘inside’ function, and multiply by the
derivative of the ‘inside’ function

It may not be that easy to identify which is the ‘inside’ function and which is the ‘outside’
function. Usually the ‘inside’ function will really look inside — except when we are dealing
with something of the form eg(x). Some authors use ex = exp(x) to get around this problem
as it is easy to see the ‘inside’ function when you write y = exp(sinx), but somehow harder
when we write y = esinx.

Examples

1. Differentiate y = (x2 + 1)8.

Solution: We could multiply out (x2+1)8 but frankly this would take too long5. What
we do instead is recognise it as a composition:

5it is not equal to (x2)8 + 18
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We have x2 + 1 at the ‘inside’ and x7 on the outside. So

2. Differentiate y = sin(ex).

Solution: Once again we have to recognise this is a composition:

We have ex at the ‘inside’ and sin x on the outside. So

3. Differentiate f(t) = log(t3 −
√
t).

Solution: O.K. we know that t3 −
√
t is the inside and log t the outside:

4. Differentiate etanx.

Solution: This is the one that we have been warned about. What we have here is

So in fact tan x is the inside and ex is the outside:
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5. Differentiate f(x) = cos2(log x).

Solution: First a remark. When we write sin x2 do we mean

This ambiguity is cleared up by saying

So this function here really is

So for the moment at least, the inside function is cos(log x) and the outside function
is x2. Let us apply the Chain Rule:

Now when we differentiate cos(log x) we need a second Chain Rule. For this function
the inside function is log x and the outside function is cosx. So, using the Chain Rule,
the derivative of cos(log x) should be given by

Now we can put the whole thing together to find f ′(x):

The split here of products, quotients and compositions seems to suggest that we are dealing
with either a product rule, a quotient rule or a chain rule. Nothing could be further from
the truth. For example, to differentiate the function

f(x) =
(sinx+ 3)5ex

tanx+ ln x

requires a quotient rule as it is a quotient. We will need to differentiate the top thus and
we will need a product rule for this. In turn we will need a chain rule for (sin x+ 3)5 when
differentiating that for the product rule. One of the big problems we will have is correctly
interpreting, for example, that log(2x + 1) is “log of 2x + 1”, not “log by (2x + 1)” which
makes no sense whatsoever (log is a function, it needs an input).
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Winter ‘10: Question 1 (b)

Differentiate by rule

y(x) =
x√

1− x2

Solution: Firstly we recognise this as a quotient and it might make sense to differentiate the
top, u = x, and the bottom, v =

√
1− x2, separately.

Before we differentiate v =
√
1− x2 we use

√
a = a1/2 to rewrite v:

Now as this is a composition, with 1 − x2 inside, and x1/2 outside we must use the Chain
Rule to differentiate this:

Now we use the formula
d

dx

(u
v

)
=

vu′ − uv′

v2

In terms of an exam we have a lot of the marks here but we should really simplify if possible.
What is annoying me is that

√
1− x2 on the bottom on the numerator. To get rid of it I

could multiply above and below by
√
1− x2...

Winter ‘10: Question 2 (b) (i)

Differentiate the following by rule

y =
2 sin x

(cosx+ 1)2

Solution: Again we have a quotient function so we will need to use the Quotient Rule.
Differentiating the top and bottom separately is as ever a good idea. The top, u, is not
troublesome:
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However the bottom, v = (cos x + 1)2, is troublesome. It is the composition of the inside
function cosx+ 1 and the outside function x2 so we apply the Chain Rule:

Now we put these into the Quotient Rule formula:

In terms of an exam we have a lot of the marks but we should simplify if possible. We can
divide above and below by (cosx+ 1) but we should be careful that6 cos x+ 1 ̸= 0:

Can we go further? The above would have gotten full marks but we could go a little further...
in fact a lot further in this example.

6when does this happen? cosx+ 1 = 0 ⇔ cosx = −1 ⇔ x ̸= π + 2kπ = (2k + 1)π for k ∈ Z
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Winter ‘10: Question 2 (b) (ii)

Differentiate by Rule
y = 4 sin(3x2 + 5) ln(2x).

Solution: In this example we have a product so we will need a product rule. Because of
linearity we can pull the 4 to the front and just differentiate the sin(3x2 + 5) ln(2x). Now
there are two functions multiplied together here:

When we differentiate we will use the Product Rule formula:

d(uv)

dx
= uv′ + vu′ (1.15)

They are both compositions so both need Chain Rules to differentiate them: i.e. to find
u′ and v′. Usually with products we can just use the Product Rule formula but when the
functions are compositions it makes more sense to differentiate them separately:

Now we plug everything back into the Product Rule formula, but not forgetting the four at
the front:

Again we simplify as much as possible:

Winter ‘11: Question 1 (b)

Given that f(t) = 3t2
√
1 + t2, find f ′(1).

Solution: The question wants us to find f ′(1), the slope of the tangent at t = 1. So we find
f ′(t), the slope of the tangent at t, and plug in t = 1. We cannot plug in t = 1 first as this
will just give us a number or constant f(1) whose derivative will be zero... First thing we
do is rewrite the function so that the square root is now a power of 1 + t2:

This is the product of two functions7, u = 3t2 and v = (1 + t2)1/2. To do the Product Rule
we need the derivative of u, u′; and the derivative of v, v′.

7we could ‘fix’ the 3 here as below but it’s not to troublesome with the t2
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The differentiation of u is straightforward but the differentiation of v requires a Chain Rule:

Now implement the Product Rule formula:

Normally we would simplify this but since we only want f ′(1) we could plug in t = 1 at this
point rather than later:

As far as I am concerned this is the answer but if you want an idea of the size of number we
have you can plug it into the calculator and get f ′(1) ≈ 10.61. This means that the function
f(t) is increasing quickly around t = 1.

Alternate Solution: There is often more than one way to skin a cat. We saw in MATH6014√
a
√
b =

√
ab. We can actually write any positive number as a square root. For example,

ex > 0, so it can be written as a root:

This means we can rewrite f(t) as

Now we can differentiate using the Chain Rule:

Now again instead of simplifying again we can just input t = 1:
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Winter ‘11 Question 2 (b)

Differentiate by rule

(i) y =
√
x2 + x+ 1.

(ii) f(t) = 10e−0.2t sin(4πt− π)

(iii) y =
4− x2

4 + x2
.

Solution

(i) After a quick rewriting this is a straightforward application of the Chain Rule:

(ii) This looks quite messy so we break it up a little.

Now we can forget about the constant until the end. After that it is a product rule
where both u = e−0.2t and v = sin(4πt− π) are compositions so will need Chain Rules
to differentiate them. Therefore we are better off differentiating separately. Personally,
0.2 looks all kinds of wrong to me. Also, in this case ex is the outside function, and
rewriting as exp(x) makes the Chain Rule easier to see:

Now we can differentiate using the Chain Rule recalling that
1

5
and 4π are nothing but

constants

Now implement the formula (uv)′ = uv′ + vu′, not forgetting the 10:
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Plenty of marks here but we should do our best to simplify:

(iii) A straightforward application of the Quotient Rule formula:(u
v

)′
=

vu′ − uv′

v2
(1.16)

where u = 4− x2 and v = 4 + x2. We have

and hence derivative, remembering to simplify:

Exercises: To check answers that are not here use WolframAlpha.com; an amazing online
computational engine. To differentiate, say esinx please input

D[Eˆ(Sin[x]), x] (1.17)

Other functions should be fairly intuitive and Wolfram Alpha is very forgiving if you do get
the code wrong. For example Wolfram Alpha will also interpret

Differentiate eˆ(sin x) (1.18)

exactly the same way. Be aware that your answer might be correct but not as simplified as
the ones given below.

1. Find the derivative of f(x) = sin(4x).

2. Where a is a constant, find the derivative of f(x) = cos(ax).

3. Find the derivative of f(t) = e−4t Ans: −4e−4t.

4. Find the derivative of y = log(5x).

5. Find the derivative of F (x) = (x3 + 4x)7.

6. Differentiate y = (x3 − 1)100 Ans: −300x2(x3 − 1)99.
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7. Find F ′(x) if F (x) =
√
x2 + 1.

8. Find the derivative of 4
√
1 + 2x+ x3.

9. Find the derivative of g(x) =
1

(t4 + 1)3
Ans:

−12t3

(1 + t4)4
.

10. Where a is a constant, differentiate the function y = cos(a3 + x3).

11. Where a is a constant, differentiate y = a3 + cos3 x.

12. Differentiate (a) y = sin(x2) and (b) y = sin2 x Ans: (a) 2x cosx (b)
2 sin x cos x = sin 2x.

13. Differentiate the function y = etanx.

14. Find f ′(x) if

f(x) =
1

3
√
x2 + x+ 1

.

15. Find the derivative of the function

g(t) =

(
t− 2

2t+ 1

)9

.

Ans:
45(t− 2)8

(1 + 2t)10
.

16. Find the derivative of g(x) = (1 + 4x)5(3 + x− x2)8.

17. Differentiate y = (2x+ 1)5(x3 − x+ 1).

18. Find the derivative of y = x cos(3x) Ans: cos(3x)− 3x sin x.

19. Find the derivative of y = x sin
√
x.

20. Find the derivative of y = sin(x cos x).

21. Find the derivative of
f(x) =

x√
7− 3x

.

Ans:
14− 3x

2(7− 3x)
√
7− 3x

=
14− 3x

2(7− 3x)3/2
.

22. Differentiate

F (z) =

√
z − 1

z + 1
.

23. Find the derivative of

y =
sin2 x

cosx
.

24. Find the derivative of y = sin
√
1 + x2 Ans:

x cos
√
1 + x2

√
1 + x2

.
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25. Find the derivative of r(θ) = tan2(3θ).

26. Differentiate y = xe−x.

27. Differentiate f(x) = x2ex Ans: xex(2 + x).

28. Differentiate y = e
1
x .

29. Find y′ if y = e−4x sin(5x).

30. Differentiate y(u) = eu(cosu+ 3) Ans: eu(3 + cosu− sinu).

31. Differentiate F (t) = et sin t.

32. Differentiate y = cos(eπx).

33. Differentiate y = ln(x3 + 1) Ans:
3x2

x3 + 1
.

34. Find
d

dx
loge(sinx).

35. Differentiate y =
√
log x.

36. Differentiate the function f(θ) = ln(cos θ) Ans: − tanx.

37. Differentiate

f(u) =
lnu

1 + ln(2u)
.

38. Find the derivative of y = (1 + cos2 x)6.

39. Find the derivative of y = x sin
1

x
Ans: sin

(
1

x

)
−

cos
(
1
x

)
x

.

40. Find the derivative of sin(sin(sin(x))).

41. Find the derivative of y =
√

x+
√
x.

42. Find
d

dx
ln

x+ 1√
x− 2

Ans:
5− x

4 + 2x− 2x2
.

43. Differentiate the function

f(x) = log

(
x

x− 1

)
.

44. Differentiate h(x) = ln
(
x+

√
x2 − 1

)
.

45. Differentiate y = log(e−x + xe−x) Ans:
−x

1 + x
.

46. Find the equation of the tangent line to the curve y = (1 + 2x)10 at the point (0, 1).

47. Find the equation of the tangent to the curve y =
√
5 + x2 at the point (2, 3).
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48. Find the equation of the tangent line to the curve y = tan(πx2/4) at the point (1, 1)

Ans: y = −2

e
x+

3

e
.

49. Find the equation of the tangent to the curve y = e−x

x
at the point (1, 1/e).

50. Find the equation of the tangent line to the curve y = ln(x3 − 7) at the point (2, 0).

51. Find all points on the graph of the function

f(x) = 2 sin x+ sin2 x

where the tangent line is horizontal.
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1.5 Rates of Change: Applied Problems

1.6 Maxima & Minima

1.6.1 Definition

Let f : R → R be a function and a, b ∈ R. Then f has a local maximum at a if there is
some open interval I1 ⊂ R such that a ∈ I1 and

Similarly, f has a local minimum at b if there exists some open interval I2 ⊂ R such that
b ∈ I2 and

x

f HxL

Figure 1.4: Note that we don’t require a local max to be an absolute maximum.

1.6.2 Proposition

Let f : R → R be continuous. If f has a local maximum at some x1 ∈ R and is
differentiable at this point, then f ′(x1) = 0. Similarly if f has a local minimum at
some x2 ∈ [a, b] and is differentiable at this point, then f ′(x2) = 0.

Proof. [Ex]: Left as an exercise. Mimic the proof of Rolle’s Theorem •

Example

Find the location of the local maxima/ minima of

f(x) = ax2 + bx+ c

Solution: From our knowledge that f either has
∪

or
∩

geometry, we know that f has
a single maximum or minimum. We also know that f is differentiable, so at this point we
know that f ′(x) = 0 — so we solve:
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1.7 Second Derivative Test

1.7.1 Definition

Let f : R → R be a differentiable function with differentiable derivative f ′(x) : R → R.
That is for each x ∈ R, the second derivative,

f ′′(x) = lim
h→0

f ′(x+ h)− f ′(x)

h
(1.19)

exists. Then f is twice differentiable. A function is defined to be n-times differentiable in the
obvious way. If derivatives of all orders exists, then f is said to be infinitely differentiable.
[Ex]: Show that polynomials are infinitely differentiable.
What if we want to look for the local extrema of f : R → R on the entire real number line?
Assuming that f is differentiable, we can certainly search for candidates by solving f ′(x) = 0
— but how do we know if we’ve caught a max or a min? Occasionally we will be able to
exploit the following situation:

x

f HxL

Figure 1.5: If a and b are stationary points of f ; then f ′′(a) < 0 implies that a is a local
maximum and f ′′(b) > 0 implies that b is a local minimum.

Case (c) below shows us that the second derivative test is not perfect — I include it as some
of ye may have encountered it before. The First Derivative Test, which we develop below is
far superior if a little harder to use. Also the First Derivative Test works when the function
is not differentiable8.

1.7.2 Proposition: Second Derivative Test

Suppose f : R → R is twice differentiable and that f ′(a) = 0 for some a ∈ R.

(a) If f ′′(a) < 0 then x = a is a local maximum.

(b) If f ′′(a) > 0 then x = a is a local minimum.

(c) If f ′′(a) = 0 then we have no information.

Proof. Omitted but once again uses the Mean Value Theorem •
8well, not differentiable at a finite number of points.
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Examples

Find the location of the local maxima/ minima of the following functions — where they are
differentiable.

1. f(x) = log(3x)− 3x.
Solution: First we find the candidates:

Now we find f ′′(x) and test x = 1/3:

That is there is a local maximum at x = 1/3 •

2. g(x) = 3x4 − 2x3 − 9x2 + 8.
Solution:

That is there are stationary points at −1, 0 and 3/2:

3. h(x) = x4, i(x) = −x4, j(x) = x3.
Solution: Big problems with all of these!

But

So no information. As it happens, h has a min, i a max, and j a saddle point (why??).



Chapter 2

Integration

I’m very good at integral and differential calculus, I know the scientific names of
beings animalculous; in short, in matters vegetable, animal, and mineral, I am
the very model of the modern Major General.

W.S. Gilbert in the Pirates of Penzance.

2.1 Definite Integrals

Suppose that f : [a, b] → R is a continuous function. If f ≥ 0, then one can approximate
the area under y = f(x) on [a, b] by drawing rectangles:

x

f HxL

Figure 2.1: Follow the process below to approximate the area under the curve using rectan-
gles.

(i) Divide the interval [a, b] into n ≥ 2 equal pieces.

(ii) Draw a rectangle on each subinterval with height equal to the value of f(x) at the
midpoint of each interval.

58
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Suppose that the length of each subinterval is ∆x. Then we have

In particular we have x1 = a+∆x, x2 = a+2∆x,... , xi = a+i∆x. Let xi be the midpoint of
the ith subinterval. In this notation we have that the area under the curve is approximated
by

Intuitively, one expects that if we choose a larger n (i.e., more subintervals, and consequently
narrower rectangles) then the total area of the rectangles is a better approximation of the
area under y = f(x). We take the limit as n → ∞ to therefore define this area:

2.1.1 Definition

Let f : [a, b] → R be continuous. Then the integral of f on [a, b], in the notation above, is
given by: ∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(xi)∆x.

Remarks

1. The sums on the right-hand side here are known as Riemann sums. That f is contin-
uous is a sufficient condition for the convergence of such a sum.

2. What if f(x) ̸≥ 0??

3. Here the function f(x) is the integrand, the a is the lower limit of integration and b is
the upper limit of integration. When a and b are constants, then the definite integral
is a number and does not depend on x; in fact

∫ b

a

f(x) dx =

∫ b

a

f(t) dt =

∫ b

a

f(s) ds, etc.
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In situations like this where a variable such as x, t, s appears but does not affect the
value of the expression, the variables x, t, s are called dummy variables.

2.1.2 Proposition

Suppose that f : [a, b] → R, g : [a, b] → R are continuous and k ∈ R, with a < b.
Then we have the following:

1. ∫ b

a

kf(x) dx = k

∫ b

a

f(x) dx.

2. ∫ b

a

[f(x)± g(x)] dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx.

3. If f(x) ≥ 0 for all x ∈ [a, b] then ∫ b

a

f(x) dx ≥ 0.

4. If f(x) ≥ g(x) for all x ∈ [a, b], then∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

5. ∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.

6. Suppose that f, g are continuous on a closed interval containing a, b and
c ∈ R:

∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

7. Where m ∈ R and M ∈ R are the minimum and maximum of f on [a, b]:

m(b− a) ≤
∫ b

a

f(x) dx ≤ M(b− a). (2.1)

8. ∫ b

a

f(x) dx = (b− a)f(c) for some c ∈ [a, b].

The Mean Value Theorem for Integrals.
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Examples

1. Given that
∫ 9

4
f(x) dx = 38, can you deduce the value of

∫ 4

9
f(t) dt? Justify your

answer.
Solution:

2. Use (2.1) to find largest and smallest possible values of∫ 5

1

(x− 2)2 dx.

Solution: Using the Closed Interval Method, the maxima and minima of f(x) = (x−
2)2 on [1, 5] are found at endpoints, points where f ′ = 0 and points where f is not
differentiable:

Now applying (6):

In the next two sections we shall examine how one computes the value of a definite
integral — hopefully not from first principles!

Exercises

1. Find lower and upper bounds for:

(i)

∫ 5

2

(3x+ 1) dx Ans: 21 and 48 (ii)

∫ 2

−1

x

x+ 2
dx Ans: − 3 and 3/2.
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2.2 Anti-Derivatives

2.3 The Second Fundamental Theorem of Calculus

Now we move on to the Second Fundamental Theorem of Calculus, which is the key to
evaluating almost all definite integrals. First we must talk about anti-derivatives.

Given F (x), we know how to compute its derivative F ′(x). Now consider the converse
problem: given the derivative of a function, find the function itself.

2.3.1 Definition

We say that F (x) is an antiderivative of f(x) on any interval if F ′(x) = f(x) on that interval.

Examples

1. Suppose that f(x) = cos x. Find an antiderivative of f(x).
Solution:

This example is typical. Once we have found one particular antiderivative F (x) of a
function f(x), then all antiderivatives of f(x) are given by the formula F (x)+C, where
C is an arbitrary constant.

2. Suppose that f(x) = x5.
Solution:

If we are given some extra numerical information, this will pin down the value of C.

3. A curve satisfies
dy

dx
= 3x2 and passes through the point (2, 5). Find the equation of

the curve.
Solution: A particular antiderivative of 3x2 is x3. Hence all functions of the form
x3 + C are anti-derivatives.

2.3.2 Theorem

Let F (x) be an antiderivative of f(x) for x ∈ [a, b]. Then for x ∈ [a, b] every antideriva-
tive of f has the form F (x) + C for some constant C.
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Remark

This is a geometrically obvious fact:

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

Figure 2.2: Shifting a graph up or down does not change it’s slope (here we have x2, x2 +2,
x2−1). Shifting a graph up or down is equivalent to adding a (positive or negative) constant.

Proof. Let G(x) be another antiderivative of f . Then G′(x) = f(x) for x ∈ [a, b]. Set
H(x) = G(x)−F (x). Let x1 and x2 be any two points in the interval [a, b]. Apply the Mean
Value Theorem for Derivatives to the function H on the interval [x1, x2]; there exists a point
c ∈ (x1, x2) such that:

Now by the Sum Rule for Differentiation H ′(x) = G′(x)− F ′(x) = f(x)− f(x);

But c and d were any two points in [a, b] so H(x) must be constant for all x ∈ [a, b], i.e.,
H(x) = G(x)− F (x) = C ⇒ G(x) = F (x) + C for x ∈ [a, b] •

Note that this proof was examinable last year — this won’t be the case this year.

Notation: the indefinite integral

∫
f(x) dx means the antiderivatives of f(x).
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2.3.3 The Fundamental Theorem of Calculus

2.3.4 Second Fundamental Theorem of Calculus

Suppose that f : [a, b] → R is continuous. Then∫ b

a

f(x) dx = F (b)− F (a)

where F is any antiderivative of f (i.e. F ′(x) = f(x)).

Remark

This theorem wants to say that when you integrate the derivative of a function you get back
the original function. In a very rough sense (heuristically) we show why this should be true.
The theorem could also be cast as

Now we have already seen that integration is really summation — we are adding up all the
f ′(xi)∆x. What are these1 f ′(xi)∆x? As ever, a picture helps:

x

f HxL

Figure 2.3: dy = f ′(xi)∆x estimates ∆y. As the partition [xi, xi+1] becomes finer as n → ∞,
the curve looks flatter so that f ′(xi)∆x becomes a better and better estimate of ∆y.

That is, in the limit, f ′(xi)∆x ≈ ∆y:

1The first set of further remarks explains why we can replace xi by xi
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Examples

1. Evaluate
∫ 3

2
2x dx.

Solution: An antiderivative of 2x is x2. By Theorem 2.3.4,

Note that one always inserts the upper limit first, then subtracts the value attained at
the lower limit, irrespective of whether the upper limit is bigger or smaller than the
lower limit. Also, you do not need to use the “+C” that appears in indefinite integrals
(why?).

2. Evaluate ∫ 4

1/2

(x3 − 6x2 + 9x+ 1) dx

Solution: Anti-derivatives are readily seen to be x4/4, −2x3, 9x2/2 and x:

And a calculator will show that this is 679/74.

To evaluate a definite integral
∫ b

a
f(x) dx, one finds an antiderivative F (x) (in other words,

one evaluates the indefinite integral
∫
f(x) dx) then one applies the Second Fundamental

Theorem of Calculus:
∫ b

a
f(x) dx = F (b) − F (a). This last step is merely arithmetic so it’s

easy, but the first step—evaluating the indefinite integral—can be tricky.

Exercises Evaluate each of the following integrals.

1.

∫ 7

2

(x2 − 2x) dx Ans:
200

3

2.

∫ 0

4

(y3 − y2 + 1) dy Ans: − 140

3

3.

∫ 64

1

(√
t− 1√

t
+

3
√
t

)
dt Ans:

6215

12

4.

∫ π

0

(1 + sin x) dx Ans: π + 2
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5.

∫ 0

π/2

sin x dx Ans: − 1

6.

∫ π/4

0

sec2 t dt Ans: 1

2.4 Integration of Elementary Functions

2.4.1 Proposition

Suppose that f and g have anti-derivatives and that k ∈ R. Then we have

1. ∫
kf(x) dx = k

∫
f(x) dx.

2. ∫
[f(x)± g(x)] dx =

∫
f(x) dx±

∫
g(x) dx.

Proof. Follows easily from the scalar and sum rules for differentiation •

2.4.2 Proposition

Suppose that n ∈ Q, n ̸= −1. Then∫
xn dx =

xn+1

n+ 1
+ C.

Proof. Simply differentiate the right-hand side •

Examples

1. Evaluate ∫ 1

0

(x4/3 + 4x1/3) dx.

Solution:
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2. Find ∫
(x2 − 4x+ 2) dx.

Solution: Using Proposition 2.4.1 we write

Observe that we wrote down only one “+C” in the second line here; it is unnecessary
to have a separate constant C for each integral since all three constants can be added to
form a single constant. The same simplification—using a single +C when integrating
even though several integrals are present—will be used frequently.

3. Find ∫ (
3x2 +

√
x− 5

x3

)
dx.

Solution:

2.4.3 Definitions

Define the following functions:

sec x =
1

cos x
,

csc x =
1

sinx
,

cotx =
1

tanx
=

cos x

sin x
.

2.4.4 Definition: Inverse Trigonometric Functions

Consider the graph of sinx in [−π, π]:
What angle has the sine of a half? Looking at the graph it can be seen there are two values;
about x = 0.5 and 2.5 (in fact x = π/6 and 5π/6). Also if the graph is inverted:
It is seen that in this range the function defined as the inverse of sine is not well-defined as
one input permits two outputs. However if restricted to [−π/2, π/2]:
This inverse function is a well-defined function. Hence the inverse sine function is defined.
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-3 -2 -1 1 2 3
x

-1.0

-0.5

0.5

1.0

sin x

Figure 2.4: The graph of y = sin x in [−π, π].

-1.0-0.5 0.5 1.0
sinHxL

-3

-2

-1

1

2

3

x

2.4.5 Definition

The inverse sine or arcsin function is:

arcsin : [−1, 1] → [−π/2, π/2] : x 7→ y = arcsin(x) ⇔ x = sin y. (2.2)

Similarly it can be seen that the inverse tan function makes sense in the same co-domain:

2.4.6 Definition

The inverse tangent or arctan function is:

arctan : R → [−π/2, π/2] : x 7→ y = arctan(x) ⇔ x = tan y. (2.3)

Here are some standard indefinite integrals, each of which can be verified by differentiating
the right-hand side. The ones of any use will be in mathematical tables (attached at the
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-1.0 -0.5 0.5 1.0
y

-1.5

-1.0

-0.5

0.5

1.0

1.5

arcsinHyL

Figure 2.5: The graph of x = arcsin y in [−1, 1].

-6 -4 -2 2 4 6
x

-1.0

-0.5

0.5

1.0

tan
-1

x

Figure 2.6: The graph of x = arctan y in [−π/2, π/2].

end of this set of notes) and don’t need to be learnt off (note that we don’t include the
exponential and logarithmic functions — they are defined properly in a later chapter):
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2.4.7 Proposition

∫
sin x dx = − cos x+ C.∫
cos x dx = sin x+ C.∫
sec2 x dx = tanx+ C.∫
csc2 x dx = − cotx+ C.∫

sec x tan x dx = sec x+ C.∫
csc x cot x dx = − csc x+ C.∫

dx√
a2 − x2

= arcsin(x/a) + C.∫
dx

a2 + x2
=

1

a
arctan(x/a) + C.

Exercises Evaluate the following indefinite integrals.

1.

∫ √
3t dt Ans:

2√
3
t3/2 + C

2.

∫
(2−

√
x)2 dx. (Hint: multiply out) Ans: 4x− 8

3
x3/2 +

1

2
x2 + C

3.

∫
(2x3 − 3x2 + 4x) dx Ans:

1

2
x4 − x3 + 2x2 + C

4.

∫
3
√
x2 dx Ans:

3

5
x5/3 + C

5.

∫ (
1

x4
+

1
4
√
x

)
dx Ans: − 1

3x3
+

4

3
x3/4 + C

6.

∫
(sin θ + cos θ) dθ Ans: − cos θ + sin θ + C

7.

∫
(s+ 1)2 ds Ans:

1

3
s3 + s2 + s+ C

8.

∫
x2 + 1

x2
dx Ans: x− 1

x
+ C

9.

∫
t2 − 1√

t
dt Ans:

2

5
t5/2 − 2

√
t+ C
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2.5 The Substitution Method

A table of indefinite integrals is helpful but no table can cover all possible integrands f(x).
Nevertheless, the usefulness of such a table is greatly increased by the following technique,
which can transform an unfamiliar integrand into a recognizable form.

The basic strategy for integration is as follows:

1. Direct — straight from the tables.

2. Manipulation — use trigonometric identities or rewrite the integrand.

3. Substitution — the method developed in this section.

4. Integration by Parts — a technique using the Product Rule for Differentiation.

The substitution method is a technique of integration that comes from the chain rule. Suppose
that f(x) is a function with anti-derivative F (x); i.e. F ′(x) = f(x). Now consider, for some
other function F (g(x)) and differentiate with the Chain Rule:

This seems to look like a particularly difficult pattern to spot. However, if we let u = g(x)
we can make the following (justified by the above comments) calculation, starting with:∫

f(g(x))g′(x) dx,

Now u is just a dummy variable so hopefully we can integrate away with respect to u.
The key here is that, starting from the complicated integral

∫
f (g(x)) g′(x) dx, find the a

function-(multiple of the)derivative pattern and choose the substitution u = function. Then
everything should hopefully work out. Note we have not evaluated the integral; we have
replaced it by a simpler integral.
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Oral Exercise

Spot the function-derivative pattern and state what the substitution should be:∫
sin 2x dx

∫
cos x

1 + sinx
dx

∫
sinx

1 + cos x
dx[1ex]∫

sin x
√
1 + cos x dx

∫
3x2 sin(x3) dx

∫
x
√
x2 + 9 dx∫

x(1 + x2)3 dx

∫
2x+ 1

x2 + x+ 1
dx

∫
sinx cos3 x dx[1ex]∫

2x√
1 + x2

dx

∫
2x− 4

x2 − 4x+ 29
dx

∫
x+ 4

x2 + 8x+ 1
dx[1ex]∫

x

x2 + 4
dx

∫
(x+ 3) sec2(x(x+ 6)) dx

∫
x− 2

x2 − 4x+ 5
dx

Remarks

1. With indefinite integrals, always transform back to the original variable after the inte-
gration is over.

2. One usually cannot integrate a mixture of variables such as
∫
x2 du or

∫
sin θ dx. Thus

when using the substitution method, be careful to transform all variables from x to u
— and do this using the equations

g(x) = u and dx =
du

g′(x)
.

Sometimes after a substitution both an x and u are present — can you do a back-
substitution: write x in terms of u?

3. When the integrand contains different types of functions, the selection of the expression
to be substituted by u is often clarified by invoking the LIATE rule-of-thumb: in order
of preference, the type of function to set equal to u is

L ogarithmic — more on this later.

I nverse Trigonometric — arcsin/arctan.

A lgebraic — polynomials.

T rigonometric — sin/cos/tan.

E xponenetial — more on this later.

The reason this seems to work shall be clarified in a later section (Integration by Parts).

4. When choosing your substitution u = g(x), the only fixed rule is that kg′(x) (some
constant multiple of the derivative) must be a factor of integrand. Usually g(x) appears
“inside another a function”.

5. If a sum or difference of terms (e.g., x2 + x− 6) appears in the integrand, never break
them up when choosing u (i.e., don’t try u = x2 or u = x2− 6; but u = x2+x− 6 may
work).
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Examples

Evaluate each of the following:

1.

∫
3x2

√
x3 + 9 dx.

Solution: The integrand is not in the tables and has no obvious manipulation. We try
a substitution. Function-Derivative pattern:

2.

∫ √
2x+ 1 dx.

Solution: The integrand is not in the tables and has no obvious manipulation. We try
a substitution. Function-Derivative pattern:

3.

∫
x5
√
1 + x2 dx.

Solution: The integrand is not in the table and has no obvious manipulation. We
try a substitution. Function-Derivative pattern... In this case our strategy has failed.
According LIATE we should choose u = x5 as this has the higher degree... Try u =
1 + x2.
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It seems as if all is lost but in fact we can do a back-substitution:

4.

∫
x sin(x2) dx.

Solution: The integrand is not in the table and has no obvious manipulation. We try
a substitution. Function-Derivative pattern:

Exercises
Evaluate the following integrals. Note that you can differentiate your answer for each indef-
inite integral to check its correctness.

1.

∫
2x2

√
x3 + 1 dx Ans:

4

9
(x3 + 1)3/2 + C

2.

∫ √
3x+ 4 dx Ans:

2

9
(3x+ 4)3/2 + C

3.

∫
t(5 + 3t2)8 dt Ans:

1

54
(5 + 3t2)9 + C
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4.

∫
s2

5
√
7− 4s3 ds Ans: − 5

72
(7− 4s3)6/5 + C

5.

∫
x2
√
1 + x dx Ans:

2

7
(1 + x)7/2 − 4

5
(1 + x)5/2 +

2

3
(1 + x)3/2 + C

6.

∫
t√
t+ 3

dt Ans: 2

[
1

3
(t+ 3)3/2 − 3(t+ 3)1/2

]
+ C

7.

∫
27r2 − 1

3
√
r

dr

8.

∫ √
1 +

1

3x

dx

x2
Ans: −2

(
1 +

1

3x

)3/2

+ C

9.

∫
cos 5x dx Ans:

1

5
sin 5x+ C

10.

∫
(x2 + 1) sin(x3 + 3x) dx Ans: −1

3
cos(x3 + 3x) + C

11.

∫
x2 sec2(x3 + 1) dx Ans:

1

3
tan(x3 + 1) + C

12.

∫
sin2 x cos x dx Ans:

1

3
sin3 x+ C

2.5.1 The Substitution Method in Definite Integrals

When evaluating a definite integral by means of a substitution, you must transform the limits
of integration — alternatively you can suppress the limits and when you have integrated with
respect to u, and transformed back into x, use the original limits. Either method is correct.
Personally I much prefer the latter but I’ll do the first example by transforming the limits.

Examples

Evaluate each of the following:

1.

∫ 9

4

√
x

(30− x3/2)2
dx.

Solution: No direct integration or manipulation:

We must also transform the limits:
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2.

∫ 3

−1

dy

(y + 2)3
.

Solution: No direct integration or manipulation:

3.

∫ π2/4

0

cos
√
x√

x
dx.

Solution: No direct integration or manipulation. Lookout for
√
x in the denominator.

Recall

y =
√
x = x1/2

dy

dx
=

1

2
x−1/2 =

1

2
√
x
.

A
√
x in the denominator is a (multiple of a) derivative of

√
x. Hence let u =

√
x:

4.

∫ 3

0

x
√
1 + x dx.

Solution: No direct integration or manipulation — and seemingly no substitution.
Chance our arm with the more complicated u = 1 + x and maybe hope for a back-
substitution:

Now transform back to x and plug in the limits:



MATH6015 — Technological Maths 2 77

Exercises Evaluate

1.

∫ 1

0

x(1− x2)5 dx Ans:
1

12
.

2.

∫ √
π/2

0

x cos(x2) dx Ans:
1

2
.

3.

∫ 3

1

t2 + 9

t2
dt Ans: 8.

2.6 Trigonometric Integrals

For

∫
sinm x cosn x dx, if m or n is an odd positive integer, make the substitution

u = other trigonometric function.

and possibly use the well-known trigonometric identity sin2 x+cos2 x = 1. This should work
because say we have sin2n(x) cos2m+1(x) as the integrand, this can also be written as

(sinx)︸ ︷︷ ︸
function

2n cos x︸︷︷︸
derivative

cos2m(x)︸ ︷︷ ︸
back-substitution with sin2 +cos2=1

.

Examples

Find the following integrals:

1.

∫
sin x cos2 x dx.

Solution: Here the power of sinx is odd so we let u = cos x:

2.

∫
sin3 x

cos4 x
dx.

Solution: First we have ∫
sin3 x cos−4 x dx,

so as sin is the odd power we let u = cos x:
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Autumn 2011 Question 1(b)(ii)

Evaluate ∫
sin3(x) dx.

Solution: There is no direct integration but a number of possible manipulations. The method
here suggests we use u = cosx as the power of sin is odd:

Note that we have a back-substitution via the relationship between sin2 x and cos2 x:

Exercises

1. Evaluate the following integrals:

(a)

∫
sin2 x cosx dx Ans:

1

3
sin3 x+ C

(b)

∫
sin3 x cosx dx Ans:

1

4
sin4 x+ C

(c)

∫
sin3 x cos4 x dx Ans:

1

7
cos7 x− 1

5
cos5 x+ C

(d)

∫
sin3 x dx Ans:

1

3
cos3 x− cos x+ C

(e)

∫
sin5 x dx Ans: −1

5
cos5 x+

2

3
cos3 x− cosx+ C

(f)

∫
cos3 x√
sin x

dx Ans: 2 sin1/2 x− 2

5
sin5/2 x+ C

2. (a) Consider

∫
sinx cosx dx. Here both sin x and cos x have odd positive integer

powers, so one has a choice of substitutions that work: u = cos x or v = sin x.
Evaluate this integral using both methods. The answers that you get will look
different from each other at first sight, but show that in fact they are the same.
Now use an identity from the tables to integrate.
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(b) Similarly to the previous exercise, evaluate the integral

∫
sin x cos3 x dx in two

different ways then show that the answers you get are the same.

2.7 The Natural Logarithm Function

From Section 2.4 we recall that∫
xn dx =

1

n+ 1
xn+1 + C provided that n ̸= −1.

What happens when n = −1? We are about to answer this question.

Unlike the situation when n ̸= −1, the integral
∫
x−1 dx is not equal to some power of x.

Instead, to evaluate this integral we must introduce a brand-new type of function — but it
will turn out to be same as the loge function that one meets in secondary school.

2.7.1 Definition

The natural logarithm function is

lnx =

∫ x

1

1

t
dt for all x > 0.

By the first fundamental theorem of calculus (Theorem ??),

d

dx
(lnx) =

1

x
for x > 0.

Note however that lnx is not precisely the anti-derivative of 1/x when x < 0 (Note that ln 0
is not defined.):

ln |x| =

{
lnx if x > 0,

ln(−x) if x < 0.

From this we can see by differentiating that∫
1

x
dx = ln |x|+ C for all x ̸= 0.

Examples

1. Find, where cosx > 0
d

dx
(ln cosx).

Solution:
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2. Evaluate

∫
dx

x lnx
, where x > 0.

Solution: This does not yield to a direct integration nor a manipulation. Is there a
function-derivative pattern...

3. Evaluate ∫
3

2x− 1
dx.

Solution: No direct integration or manipulation. From function-derivative or LIATE:

The same type of substitution is used in the next example but note that 1/f(x) as an
integrand does not necessarily mean that the integral is a log.

4. Evaluate ∫
1

(2x− 1)2
dx.

Solution: No direct integration or manipulation. From function-derivative or LIATE:
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Integrals similar to these arise frequently in the method of partial fractions (more on
these later).

2.7.2 Properties of the natural logarithm

As you would expect, this definition of the natural logarithm (ln) has the same properties as
those discovered at school. To show this we first prove a lemma (a theorem that is proved
only for the purpose of proving another).

2.7.3 Lemma

If a and b are positive, then ∫ ab

a

1

t
dt =

∫ b

1

1

t
dt = ln(b).

Proof. Make the substitution u = t/a in the first integral and this time transform the limits:

2.7.4 Theorem

For all positive a and b, and any rational number r, we have

(i) ln 1 = 0,

(ii) ln(ab) = ln a+ ln b,

(iii) ln
(a
b

)
= ln a− ln b,

(iv) ln ar = r ln a.

Proof. (i) This is trivial.

(ii)

(iii) Firstly
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Now note

ln

(
1

b

)
=

∫ 1/b

1

1

t
dt = −

∫ 1

1/b

1

t
dt

= −
∫ b×1/b

1/b

1

t
dt = − ln(b).

(iv) First we prove the case with r = n is a natural number:

Now suppose r = p/q is a fraction (less than 1). In fact it suffices to prove the fact in
the case where f = 1/q as

ln(ar) = ln(ap/q) = ln((a1/q)p) = p ln(a1/q).

Now

Use the substitution u = tq:

This completes the proof as with r = p/q

ln(ap/q) = ln((a1/q)p) = p ln(a1/q) = p

(
1

q
ln(a)

)
= r ln(a) •

Remark

Both the lemma and the theorem were examinable over the last few years and have been on
both papers in 2009 and 2011. They are also examinable this year and as those years are
the years this course is derived from there is a very high chance that they will be on your
summer paper.
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2.7.5 Graph of y = ln x

The function y = ln x is defined for x > 0 and we know already that its derivative is 1/x.
This is positive, so lnx is an increasing function. Differentiating again,

This is negative, so the graph is concave down. To determine what happens to lnx as x → ∞
and x → 0, we first use a picture to show that

1

2
< ln 2 < 1 :

x

f HxL

Figure 2.7: Using the lower and upper bound techniques of Section 2.4 allows us to estimate
ln 2.

Consequently,

and thus
lim
x→∞

lnx = ∞.

Similarly,

so that
for x > 0, lim

x→0
lnx = −∞.

Putting all these facts together, the graph is
Exercises
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x

f HxL

Figure 2.8: A rough sketch of y = ln(x).

1. Find the derivative of each of the following functions.

(a) ln(3x2 − 6x+ 8) Ans:
6x− 6

3x2 − 6x+ 8

(b) ln[(4x2 + 3)(2x− 1)] Ans:
24x2 − 8x+ 6

(4x2 + 3)(2x− 1)

(c) ln

(
x

x+ 1

)
Ans:

1

x(x+ 1)

(d) ln(2x− 1)3 Ans:
6

2x− 1

(e) ln3(2x− 1) Ans:
6 ln2(2x− 1)

2x− 1

2. Evaluate the following integrals.

(a)

∫
x2 dx

x3 + 1
Ans:

1

3
ln |x3 + 1|+ C.

(b)

∫
x2 + 2

x+ 1
dx (Hint: first divide the bottom into the top)

Ans:
1

2
x2 − x+ 3 ln |x+ 1|+ C.

(c)

∫
lnx

x
dx (Hint: recall LIATE) Ans:

1

2
ln2 x+ C.

(d)

∫
dx

3− 2x
Ans: −1

2
ln |3− 2x|+ C.

(e)

∫ 5

3

2x

x2 − 5
dx Ans: ln 5.

(f)

∫
dx√

x(1 +
√
x)

Check your answer by differentiation

(g)

∫
cos(lnx)

x
dx Ans: sin(ln x) + C.
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(h)

∫
sin x

1− cosx
dx Ans: ln |1− cos x|+ C.

3. Use logarithmic differentiation to compute the derivatives of the following functions.

(a)
x3 + 2x
5
√
x7 + 1

Ans:
8x9 − 4x7 + 15x2 + 10

5(x7 + 1)6/5

(b)
3x√

(x+ 1)(x+ 2)
Ans:

3

2
(3x+ 4)[(x+ 1)(x+ 2)]−3/2

(c)
3
√
x+ 1

(x+ 2)
√
x+ 3

Ans:
−7x2 − 23x− 12

6(x+ 1)2/3(x+ 2)2(x+ 3)3/2

4. In each of the following equations, find dy/dx by implicit differentiation.

(a) lnxy + x+ y = 2 Ans: −xy + y

xy + x

(b) ln
y

x
+ xy = 1 Ans:

y(1− xy)

x(1 + xy)
[Autumn 2011 Question 3 (b)]

2.8 The Natural Exponential Function

From the graph of §2.7.5 we see that y = ln x has domain (0,∞), range (−∞,∞) and is
one-to-one. Consequently it has an inverse function, which we call the natural exponential
function and write as x = exp y. That is, y = ln x means exactly the same as x = exp y. It
follows that

These are called the cancellation equations.

x

f HxL

Figure 2.9: We can figure this graph out from the graph of y = ln x.



MATH6015 — Technological Maths 2 86

It turns out that in fact expx = ex , where the number e ≈ 2.71828. That is, y = ln x
means exactly the same as x = ey. From the standard definition of logarithms to any base,
this means that lnx = loge x for all x > 0.

In particular ln 1 = 0 implies that e0 = 1. From the graph, we have ex > 0 for all x,
limx→−∞ ex = 0, limx→∞ ex = ∞.

To find the derivative of ex we differentiate the ln(ey) = y with respect to y, using the chain
rule and d(ln y)/dy = 1/y:

We are more used to dealing with functions of x, so we write this as

d(ex)

dx
= ex.

Of course this implies that ∫
ex dx = ex + C.

Asymptotically as x → ∞, ex ≫ x; that is ex grows much, much larger than x so we have,
for example

Examples

1. Find the absolute minimum value of the function g(x) = ex/x, x > 0.
Solution: For this we note first that g has a vertical asymptote at x = 0 and also that
g tends to infinity as x does. Also note that g is differentiable for x ̸= 0 (why?) and
so we can use the second derivative test to hopefully locate the minimum (as, at the
very least, g has ‘

∪
’ geometry). So, by the quotient rule, differentiate:
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2. Find the derivative of e2
√
x.

Solution: Using the Chain Rule:

3. Find

∫
e1/x

x2
dx.

Solution: Again, no direct integration nor obvious manipulation but note∫
e1/x

x2
dx =

∫
e1/x

1

x2
dx,

and the derivative of 1/x is a constant multiple of 1/x2:

[Ex]: Check your answer by differentiation.

4. Evaluate

∫ e4

e

dx

x
√
lnx

.

Solution: Again it’s hard to see a function-derivative pattern but note:∫
dx

x
√
lnx

=

∫
1√
lnx

× 1

x
dx,

Exercises

1. Find the derivatives of the following functions.

(a) e1/x
2

Ans: −2e1/x
2

x3

(b) e2x+lnx Ans: e2x + 2xe2x

(c) e−3x2
Ans: −6xe−3x2

(d)
ex − e−x

ex + e−x
Ans:

4

(ex + e−x)2

(e) ecos 2x Ans: −2ecos 2x sin 2x
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(f) ex lnx Ans: xx(lnx+ 1)

2. Sketch the graph of y = e−x

3. In each of the following equations, find dy/dx by implicit differentiation.

(a) ex + ey = ex+y Ans:
ex(1− ey)

ey(ex − 1)
[Summer 2011 Question 3(b)]

(b) y2e2x + xy3 = 1 Ans: − y2 + 2ye2x

2e2x + 3xy

4. Evaluate the following integrals.

(a)

∫
e
√
x

√
x
dx Ans: 2e

√
x + C

(b)

∫
e2−5x dx Ans: −1

5
e2−5x + C

(c)

∫
1 + e2x

ex
dx (Hint: divide bottom into top) Ans: ex − e−x + C

(d)

∫
e3x

(1− 2e3x)2
dx Ans:

1

6(1− 2e3x)
+ C

(e)

∫
e2x

ex + 3
dx Ans: ex − 3 ln(ex + 3) + C

(f)

∫ 1

0

e2 dx Ans: e2

(g)

∫ 2

0

xe4−x2

dx Ans:
1

2
(e4 − 1)

5. Let f(x) = xe−x. Find the local extrema of f and its points of inflection.

2.9 Partial Fractions

This technique concerns the integration of rational functions2. When integrating a rational
function, the degree of the numerator must be less than the degree of the denominator. If
this is not the case, then use polynomial long division to divide the denominator into the
numerator. For example, x2/(x+ 1)

2recall f is a rational function if f(x) = p(x)/q(x) where p and q are polynomials
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and x− 1 is easily integrated, so∫
x2

x+ 1
dx =

x2

2
− x+

∫
1

x+ 1
dx,

where in the remaining integral the degree of the numerator is 0 while the degree of the
denominator is 1, as desired.

A proper rational function is a quotient p(x)/q(x) of two polynomials p(x) and q(x) with
degree p < degree q. This section deals only with integrands that are proper rational func-
tions.

Many methods of integration (e.g., substitution, integration by parts) are general in nature:
they can be applied to many types of integrand, but one may not know in advance whether
they will work or fail. In contrast, the partial fractions method that we now describe is
suitable only for the integration of proper rational functions but it is guaranteed to work!

The method is mostly algebraic in nature. Note that we can add together fractions; e.g.

Also we can decompose fractions into simpler ones; e.g.
The key idea is that p(x)/q(x) can be written as a sum of simpler terms, each term having
a denominator corresponding to a factor of q(x). Consequently the original integral can
be replaced by a sum of simpler integrals. Furthermore, it can be shown, that this partial
fraction expansion is unique.

2.9.1 General Method for Partial Fractions

Let f(x) = p(x)/q(x) be a rational function.

1. Ensure that f(x) is a proper rational function3.

2. Factor q(x) as far as possible (every polynomial can be factored as a product of linear
factors ax+ b and quadratic factors ax2 + bx+ c).

3. To each factor of q(x) we associate a term in the partial fraction decomposition via the
following rule:

I: To each non-repeated linear factor of the form (ax + b) (i.e. no other factor of
q(x) is a constant multiple of (ax+ b)) there corresponds a partial fraction term
of the form:

Example: Suppose f(x) = p(x)/q(x), with deg(q) < deg(p), and q(x) = (x −
1)(2x− 1)(−x+ 2). What is the partial fraction expansion of f(x)?

3this will always be the case in MS 2002
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To integrate each of the right-hand side terms, let u =linear factor in each of the
denominators.

II: To each linear factor of the form (ax + b)n (i.e. a repeated linear factor of q(x))
there corresponds a sum of n partial fraction terms of the form:

Example: Suppose f(x) = p(x)/q(x), with deg(q) < deg(p), and q(x) = (x −
1)3(2x− 1)(−x+ 2)2. What is the partial fraction expansion of f(x)?

Again, to integrate each of the right-hand side terms, let u =linear factor in each
of the denominators.

III: To each non-repeated quadratic factor of q(x) of the form (ax2 + bx+ c) (i.e. no
other factor of q(x) is a constant multiple of (ax2 + bx + c)) there corresponds a
partial fraction term of the form:

Example: Suppose f(x) = p(x)/q(x), with deg(q) < deg(p), and q(x) = (x −
1)2(x2 + x+ 1)(2x2 + 3). What is the partial fraction expansion of f(x)?

To integrate the terms that come from quadratic factors, complete the square and
work from there.

IV: To each quadratic factor of the form (ax2 + bx+ c)n (i.e. a repeated linear factor
of q(x)) there corresponds a sum of n partial fraction terms of the form:

Example: Suppose f(x) = p(x)/q(x), with deg(q) < deg(p), and q(x) = (x −
1)2(2x− 1)(2x2 + 3)2. What is the partial fraction expansion of f(x)?

Examples of Rule IV are always very long and we won’t discuss them further in
MS2002.

4. Write the partial fraction expansion as a single fraction “f(x)”, and set it equal to
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f(x). Compare the numerators of f(x), u(x); and the numerator of “f(x)”, v(x); by
setting them equal to each other:

Find the coefficients in the partial expansion using one of two methods:

(a) The coefficients of u(x) must equal those of v(x). Solve the resulting simultaneous
equations. This is the best method if there are any quadratic terms but works
equally well if there are none.

(b) If u(x) and v(x) agree on all points then f(x)=“f(x)”. Generate m simultaneous
equations in m variables by plugging in m different values x1, x2, . . . , xm and
solving the equations:

This method works best when all the factors are linear.

Examples

1. Find the partial fraction expansion of
7

2x2 + 5x− 12
.

Solution: First factor the denominator:

Now to each of these factors associate a term in the partial fraction expansion and
write as a single fraction:

Now we want to compare (use method (b)):
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2. Evaluate

∫
6x2 − 3x+ 1

(4x+ 1)(x2 + 1)
dx.

Solution: Firstly there is no direct integral but the method of partial fractions provides
a manipulation as the integrand is a (proper) rational function. Let us find the partial
fraction expansion of

p(x)

q(x)
=

6x2 − 3x+ 1

(4x+ 1)(x2 + 1)
.

First we factor q(x) as much as possible... Hence we have a partial fraction expansion:

So we want 6x2 − 3x+ 1 = A(x2 + 1) + (Bx+ C)(4x+ 1):

We use method (a) to determine the coefficients as there was a quadratic in q. Hence
we must solve the simultaneous equations:
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So now we have

7

2x2 − 3x+ 1
=

2

4x+ 1
+

x− 1

x2 + 1
= 2

1

4x+ 1
+

x

x2 + 1
− 1

x2 + 1
.

Hence to integrate (sum and scalar rules) we have∫
7

2x2 − 3x+ 1
dx = 2

∫
1

4x+ 1
dx+

∫
x

x2 + 1
dx−

∫
1

x2 + 1
dx.

Use the substitutions u = 4x+1 and v = x2+1 for the first two — the third is directly
integrable as arctan x:

3. Evaluate

∫
dx

x5 − x2
.

Solution: Proceeding as above to partial fractions; factorise the denominator:

Now you can factorise x3 − 1 by the factor theorem or memory of a3 − b3. I prefer to
come up with the formula on the spot as follows:
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In other words x3 − 1 = (x− 1)(x2 + x+ 1) so we have

x5 − x2 = x2(x− 1)(x2 + x+ 1).

Here x2 is not a quadratic factor (although if you carry on with case III it’ll come out
fine); it is the linear factor (x− 0) repeated twice (Case II). Can we factor x2 + x+ 1
any further... Hence we have partial fraction expansion:

1

x5 − x2
=

A

x
+

B

x2
+

C

x− 1
+

Dx+ E

x2 + x+ 1

=
A

x
.
x

x
.
x− 1

x− 1
.
x2 + x+ 1

x2 + x+ 1
+

B

x2
.
x− 1

x− 1
.
x2 + x+ 1

x2 + x+ 1

+
C

x− 1
.
x2

x2
.
x2 + x+ 1

x2 + x+ 1
+

Dx+ E

x2 + x+ 1
.
x2

x2
.
x− 1

x− 1
.

Hence we want

1 = Ax(x−1)(x2+x+1)+B(x−1)(x2+x+1)+C(x2)(x2+x+1)+(Dx+E)(x2)(x−1).

Normally with the quadratic I would suggest method (a) but here maybe (b) is easier
(with so many terms to multiply out: we would have to solve a system of simultaneous
equations in five unknowns); let x = 0, 1:

Now, to generate three equations, to solve for A, D and E try x = −1, 2, −2 on:

1 = Ax(x−1)(x2+x+1)−(x−1)(x2+x+1)+
1

3
(x2)(x2+x+1)+(Dx+E)(x2)(x−1).

This yields
3A+ 3D − 3E = −2. (2.4)

x = 2,
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Which yields
21A+ 12D + 6E = −2 (2.5)

[Ex]: Show that x = −2 yields:

3A+ 4D − 2E = −2 (2.6)

and show that the solution of the simultaneous equations is given by A = 0, D = −1/3
and E = 1/3. Complete the integral.

Exercises
Evaluate the following integrals.

1.

∫
dt

t2 − 4
Ans:

1

4
ln

∣∣∣∣t− 2

t+ 2

∣∣∣∣+ C

2.

∫
dx

(8− x)(6− x)
Ans:

1

2
ln

∣∣∣∣(8− x)

6− x

∣∣∣∣+ C

3.

∫
5x− 2

x2 − 4
dx Ans: ln

∣∣(x− 2)2(x+ 2)3
∣∣+ C

4.

∫
6x2 − 2x− 1

4x3 − x
dx Ans:

1

4
ln

∣∣∣∣x4(2x+ 1)3

2x− 1

∣∣∣∣+ C

[Autumn 2011 Question 4(a)]

5.

∫
(x− 1) dx

x3 − x2 − 2x
Ans:

1

6
ln

∣∣∣∣x3(x− 2)

(x+ 1)4

∣∣∣∣+ C

6.

∫
dx

x3 + 3x2
Ans:

1

9
ln

∣∣∣∣x+ 3

x

∣∣∣∣− 1

3x
+ C

7.

∫
dx

(x+ 2)3
Ans: −1

2
(x+ 2)−2 + C

8.

∫
(x3 − 1) dx

x(x− 2)3
Ans:

−17x+ 27

4(x− 2)2
+

1

8
ln
∣∣x(x− 2)7

∣∣+ C

9.

∫
dx

2x3 + x
Ans:

1

2
ln

∣∣∣∣ x2

2x2 + 1

∣∣∣∣+ C

10.

∫
(x2 + x) dx

x3 − x2 + x− 1
Ans: ln |x− 1|+ arctan x+ C

11.

∫
x2 − 2x− 3

(x− 1)(x2 + 2x+ 2)
dx Ans:

1

10
ln

∣∣∣∣(x2 + 2x+ 2)9

(x− 1)8

∣∣∣∣− 2 arctan(x+ 1) + C

12.

∫
dx

16x4 − 1
Ans:

1

8
ln

∣∣∣∣2x− 1

2x+ 1

∣∣∣∣− 1

4
arctan 2x+ C

13.

∫
2x2 + x− 8

x3 + 4x
Ans:

1

2
arctan

x

2
+ 2 ln

∣∣∣∣x2 + 4

x

∣∣∣∣+ C
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2.10 Area

2.11 Area of a Plane Region

Recall from Chapter 1 that if a < b and f(x) ≥ 0 on [a, b], then
∫ b

a
f(x) dx gives the area

enclosed between y = f(x) and the x-axis on the interval [a, b].

More generally, if a < b and g(x) ≤ f(x) on [a, b], then∫ b

a

[f(x)− g(x)] dx =

∫ b

a

“upper curve− lower curve” dx

measures the area enclosed between y = f(x) and y = g(x):

x

f HxL

Figure 2.10: Whenever f(x) ≥ g(x),

∫ b

a

(f(x)− g(x)) dx measures the area between the two

curves y = f(x) and y = g(x).

Examples

1. Find the area of the region bounded by the curves y = x2 and y = −x2 + 4x.
Solution: It is usually advisable to draw a rough diagram when computing areas or
volumes. We know that both functions go through the origin and we know that y = x2

has it’s minimum there also. y = −x2 + 4x is a ‘
∩
’ quadratic so has a maximum —

either at the midpoint of the roots (due to symmetry) or where dy/dx = 0:

At x = −2, y = 4 so we have an idea of the situation:

The points of intersection is on both curves...
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x

f HxL

Figure 2.11: We must find the second point of intersection.

Hence we evaluate the integral:

2. Roughly sketch the region enclosed by the curves x = 1 − y2 and x = y2 − 1. By
integrating with respect to y, find the area of the region enclosed by these two curves.
Solution: Note that we know what y = 1 − x2 and y = x2 − 1 look like. These look
exactly the same except the rôles of x and y are reversed:

x

f HxL

Figure 2.12: Once again we must find the points of intersection.

To find the points of intersection:
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Hence we can integrate with respect to y from −1 to 1 — and x = 1− y2 is the ‘upper
curve’:

3. Find the area enclosed by the curves y = x and x = y2 − 12.
Solution: Draw a picture

x

f HxL

Figure 2.13: y = x is a line while x = y2−12 is a quadratic except that the ys are the inputs
and xs are the outputs — hence the quadratic is on it’s side. We need to find the points of
intersection.

Find the points of intersection:

Hence the curves intersect at (−3,−3) and (4, 4). Note that the curve x = y2 − 12
is actually composed of two functions glued together — namely y = +

√
x+ 12 and

y = −
√
x+ 12 (which is which?). Note now that the area enclosed can be split into

two separate integrals:

(a) the area between the curves y = +
√
x+ 12 and y = −

√
x+ 12 in the region

−12 ≤ x ≤ −3.

(b) the area between the curves y = +
√
x+ 12 and y = x in the region −3 ≤ x ≤ 4.

Thus

Area =

∫ −3

−12

[√
x+ 12− (−

√
x+ 12)

]
dx+

∫ 4

−3

[√
x+ 12− x

]
dx.

We will evaluate these separately:

Now write in terms of x and use the original limits:
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Now the second integral:

Adding this up and adding it to the first answer gives the area as 343/6.

Exercises

1. Find the area of each of the following regions. In each question a rough diagram of the
region will help.

(a) Bounded by y = −x2 and y = −4. Ans: 32/3

(b) Bounded by y = 2− x2 and y = −x. Ans: 9/2

(c) Bounded by y =
√
x and y = x3. Ans: 5/12

(d) Bounded by y2 = 4x and x2 = 4y. Ans: 16/3

(e) Bounded by y = x2, the x-axis and the lines x = 1 and x = 2. Ans: 7/3

(f) Bounded by y = x2 − 4x, the x-axis, and the lines x = 1 and x = 3. Ans:
22/3

(g) Bounded by y = x3 − 2x2 − 5x + 6, the x-axis, and the lines x = −1 and x = 2.
Hint: you will need to divide the region into two parts and compute an integral
for each part. Ans: 157/12

(h) Bounded by the curve y = ex, the coordinate axes, and the line x = 2. Ans:
e2 − 1

2. The region bounded by the parabola y2 = 4x and the line 4x− 3y = 4 is shown in the
diagram.
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Find the area of this region using integration. (Hint: it is easier if you integrate with
respect to y.) Ans: 125/24

3. Find the area of the region bounded by the parabola y2 = 2x−2 and the line y = x−5
using two different approaches: (i) integrate with respect to x (this will require you to
break the region into two parts, each of which has its own integral) (ii) integrate with
respect to y. Hint: this problem is similar to Example... Ans: 18

2.12 Further Applications

2.13 First Order Separable Differential Equations

A differential equation is an equation containing one or more derivatives, e.g.,

y′ = x2,

d2y

dx2
+ x

dy

dx
= sin x.

Most laws in physics and engineering are differential equations.

The order of a differential equation is the order of the highest derivative that appears;

y′ = x2 is first order

d2y

dx2
+

(
dy

dx

)3

= 1 is second order

(cosx)

(
d2y

dx2

)3

+
dy

dx
= y is second order.

A function y = f(x) is a solution of a differential equation if when you substitute y and its
derivatives into the differential equation, the differential equation is satisfied. For example,
y = tanx is a solution of the differential equation y′ = 1 + y2 since if y = tan x, then

A differential equation can have many solutions: y′ = 2 has a solution y = 2x+ C for every
constant C. The general solution of a differential equation is the set of all possible solutions.
The differential equation y′ = 2 has general solution y = 2x + C, where the constant C is
arbitrary. It can be very difficult to find the general solution of a differential equation. We
shall consider only certain first-order differential equations that can be solved fairly readily.

2.14 First-order Separable Differential Equations

A separable first-order differential equation is one that can be written in the form
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In this situation we can separate the variables:

Each side can now be integrated:

The point of separating the variables is that we cannot usually integrate expressions like∫
y dx where both variables appear.

Example

Solve the separable first order differential equation:

y′ = xy.

Solution: First separate the variables and integrate:

Usually we want to solve for y:

Here there are two infinite families of solutions. The solution of a first-order differential
equation will always contain an unknown constant — and might have different families of
solutions also (e.g. the solution y2 = x + C has the families y = +

√
x+ C and −

√
x+ C).

However an extra piece of numerical data such as “y = 2 when x = 1” sometimes reduces
this to a unique solution. Note that this will usually be written as y(1) = 2 — for the
input x = 1, the output is y = 2. This extra data is called an initial condition or boundary
condition and the entire problem (differential equation and boundary condition) is often
called an initial-value problem or boundary-value problem.

Example

Solve the initial-value problem
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dy

dx
=

1 + x

xy
for x > 0, where y(1) = −4.

Solution: First separate the variables and integrate:

Now apply the boundary condition:

Now substitute in the constant and hopefully solve for y(x):

Now the fact that y = −4 at x = 1 and that
√
x > 0 where defined implies that the solution

is y(x) = −
√

2(loge x+ x+ 7). [Ex:] Show that this solves the differential equation and
satisfies the boundary condition.

Further Remarks: Picard’s Existence Theorem

There is a theorem in the analysis of differential equations which states that if a differential
equation is suitably nice in an interval about the boundary condition then not only does a
solution exist but it is unique. This allows us to define functions as solutions to differential
equations. For example, an alternate definition of the exponential function, ex, is the unique
solution to the differential equation:

dy

dx
= y , y(0) = 1.

Exercises

1. Solve the following differential equations:

(a) y′ = 3x2 + 2x− 7 Ans: y = x3 + x2 − 7x+ C
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(b) y′ = 3xy2 Ans: 3x2y + Cy + 2 = 0

(c)
dy

dx
=

3x
√

1 + y2

y
Ans: 2

√
1 + y2 = 3x2 + C

(d)
dy

dx
=

x

4y
, y(4) = −2 Ans: x2 = 4y2

2. The point (3, 2) is on a curve, and at any point (x, y) on the curve the tangent line has
slope 2x− 3. Find the equation of the curve. Ans: y = x2 − 3x+ 2

3. The slope of the tangent line to a curve at any point (x, y) on the curve is equal to
3x2y2. Find the equation of the curve, given that the point (2, 1) lies on the curve.

Ans: −1

y
= x3 − 9

2.14.1 Exponential growth and decay

Consider the differential equation

where k is a non-zero constant and y > 0. This equation models many natural processes
where a quantity y increases (k > 0) or decreases (k < 0) at a rate proportional to its size
and t is usually time. It is separable so we can solve it:

As y = y(t) (i.e., y is a function of t), putting t = 0 in this equation yields y(0) = e0+C = eC .
That is, the solution of is

y(t) = y(0)ekt. (2.7)

When k > 0 the function y(t) grows exponentially (e.g., population growth), while if k < 0
the solution decays exponentially (e.g., radioactive decay). Graphs of these two situations:

Example

The growth of bacteria in a certain culture is proportional to the number of bacteria present.
If initially there are 1, 000 bacteria, and the number doubles in 12 minutes, how long will it
take before there are 1, 000, 000 bacteria present?
Solution: Write y for the number of bacteria. Then dy/dt = ky where k is for the moment
unknown and t is time measured in minutes. From (2.7), the solution of this differential
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t

Figure 2.14: Examples of exponential growth and decay.

equation is y(t) = y(0)ekt. We are told that y(0) = 1000, so y(t) = 1000ekt. Note that this
could be done by solving the differential equation but this would be acceptable in an exam
situation. In this context, y(0) = 1000 would be a boundary condition.

To find k, we need another boundary condition. Luckily we know y(12) = 2, 000:

We now have y(t) = 1000e(t ln 2)/12. To answer the question posed in this problem, we must
solve for t in the equation y(t) = 1, 000, 000:

Now taking logs:

which on a calculator is approximately 119.6.
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Exercises

1. Solve the initial-value problem dy/dt = −6y, y(0) = 5. Ans: y(t) = 5e−6t

2. Bacteria grow in a culture at a rate proportional to the number present. If there are
1,000 bacteria initially and the number doubles in 1 hour, how many bacteria will there
be in 3.5 hours? Ans: 8000

√
2 ≈ 11, 300

3. In a chemical reaction the rate of conversion of a substance is proportional to the
amount of the substance still untransformed at that time. After 10 minutes, 1/3 of
the original amount of the substance has been transformed. After 15 minutes (from
the beginning of the experiment), 20g has been transformed. What was the original
weight of the substance? Ans: 43.9g

4. The rate of natural increase of city’s population is proportional to the population. If
the population increases from 40,000 to 60,000 in 40 years, when will the population
be 80,000? Ans: 68.4 years


