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Q1. (a) Use partial fractions to decompose

72?2 + 5z — 6

x2{x -3
Ha=3) (9 marks)

(b) Use the cover up method to find

)

(7 marks)

(¢) Find the inverse Laplace transforms

(14 marks)

(d) Solve using only the Laplace Transform Method for z(t),

d i
ﬁ“ + 51 =40e™,  2{0) = 0.

{11 marks)

{e} A Local Authority allows up to 18 houses per hectare (1 hectare=10000m?).
Irom one straight boundary of a plot of land the following offsets were taken

at B0m intervals.

Distance (m) 0 30 | 100 150 200 520 | 300 | 330

400

Offset (m) 56 162 | 12 | 8 | 96 100 | 95 | 88

70

(i) Use Simpson’s Rule to estimate the area of the site.

(ii) Calculate the maximwm number of houses that may be built.
(9 marks)
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o

Q2. (a) Use integration by parts to determine / x cos 4x dx.

Q3.

(b)

()

(a)

0 (7 marks)

Use the definition of Laplace transform to derive £L{e'}.
(6 marks)

Find the Laplace transform of the following functions.

(i) (2t — 3)(t +2) (ii) 4632 (iii) sin(4t) cos(2t)

(12 marks)

The differential equation governing the displacement x{t} of a damped oscillator
is given by
17
() 4 2 () + Zm(t) = 0.

(i) Solve the differential equation using the Laplace Transform Method,
given that ©{0) = 0 and «'(0) = 3.

(ii} Determine the period of the oscillation and the duration of the oscillations.

(iii) Sketch () labelling the axes appropriately.
(16 marks)

The modulus of rigidity,

where R is the radius, 8 is the angle of twist and L is the length. Use partial
differentials to determine an approximate expression for AG. Hence find the
approzimate percentage change in G when R is increased by 2%, 8 is reduced

by 5% an dL is increased by 4%.
(9 marks)
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4. (a} Determine the partial derivatives.

(i) %(59338%%)

0 g 7 7)

(8 marks)

(b} Use Euler’s method with step size h = 0.2 to estimate y{0.5), where y(x) is the
solution to the initial-value problem,
dy
14 23)-L — 2y =0
(1+2%)+ —2y
y(0.1) = 1.
(9 marks)

(¢) Verify that the equation
32° — 10z — 14 =0

has a root in the interval [2,3]. Use the Newton-Raphson method to approximate

this root correct to three decimal places where zp = 2.
(8 marks)



Laplace Transform Formulae

L{f{t)} = F(s) m/o flt)e " dt mfo e S f(t)dt Definition
L{Af(t) + Bg{t)} = AF(s) + BG(s), A, B are constants Linearity
LLf(B)} = sF(s) = F(0)

L{f(t)} = $°F(s) — s£(0) ~ f(0)

C{f(1)e™} = LLFE) s msma = F8)s—s—a First Translation Theorem
L{f(t—a)U(t —a)} = e P L{f(t)} = e F(s) Second Translation Theorem
1
1} = -
Ly =1
" nl
Ly =g, n=0123,...
at 1 . »
L{e"} = a 18 a constant

S..._

ef [ " fw) du = £

LISt —a)} =e"

— 8L

LUt —a)} = < a > 0, a is a positive constant
L{sinkt k kisac
{sinkt} = Joan is a constant
L{cos kt} i
g ==
0 52 + k2

. k
E{Sinh kﬁt} = m

L{cosh kt} = ;5%,’}5



