

**CORK INSTITUTE OF TECHNOLOGY
INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ**

Semester 1 Examinations 2013/14

Module Title: Technological Maths 201

Module Code: MATH 6040

School: Civil, Structural and Environmental Engineering

Programme Title: Bachelor of Engineering in Civil Engineering– Year 2
Certificate in Environmental & Energy Engineering– Year 1

Programme Code: CCIVL_7_Y2
EENEN_7_Y1

External Examiner(s): Dr. J.G. Murphy

Internal Examiner(s): Ms J. English

Instructions: **ALL Questions to be answered.**

Duration: 2 HOURS

Sitting: Winter 2013

Requirements for this examination: Mathematics Tables, graph paper.

Note to Candidates: Please check the Programme Title and the Module Title to ensure that you are attempting the correct examination.

If in doubt please contact an Invigilator.

Q1. (a) For the matrices

$$A = \begin{bmatrix} 2 & -3 & 1 \\ 4 & 0 & 2 \end{bmatrix}; B = \begin{bmatrix} 1 & 3 \\ 2 & -2 \\ -1 & 4 \end{bmatrix}; C = \begin{bmatrix} 2 & 1 \\ 0 & 2 \\ -3 & 4 \end{bmatrix}$$

(i) Compute AC
(ii) Determine BC^T

[6 marks]

(b) Find the values of t for which the matrix

$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \\ 1 & t & t+3 \end{bmatrix}$$

does not have an inverse.

[3 marks]

(c) (i) Obtain the inverse of the matrix

$$A = \begin{bmatrix} 1 & 3 & 1 \\ 4 & -2 & -3 \\ 3 & 7 & 1 \end{bmatrix}$$

and confirm your answer.

Use matrix inversion to solve the set of simultaneous equations

$$\begin{aligned} x + 3y + z &= -3 \\ 4x - 2y - 3z &= 2 \\ 3x + 7y + z &= -11 \end{aligned}$$

(ii) Use Cramer's rule to verify the answer for z .

[16 marks]

Q2. (a) Given the vectors

- $\mathbf{u} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$
- $\mathbf{v} = 3\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$
- $\mathbf{w} = \overrightarrow{PQ}$

where P is the point $(3, 2, 3)$ and Q is the point $(4, 1, 2)$:

- express the vector \mathbf{w} in the form $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$;
- determine the angle between the vectors \mathbf{u} and \mathbf{v} .

[8 marks]

(b) If forces \mathbf{F}_1 and \mathbf{F}_2 are defined by

$$\mathbf{F}_1 = 5\mathbf{i} - 6\mathbf{j} + 2\mathbf{k} \quad ; \quad \mathbf{F}_2 = -3\mathbf{i} + 4\mathbf{j}$$

find the work done by the resultant force $\mathbf{F}_1 + \mathbf{F}_2$ in moving an object from $(6, -2, 5)$ to $(7, -3, 8)$.

[8 marks]

(c) A force \mathbf{F} of magnitude 80 N in the direction $\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}$ is applied at the point $P(2, -4, 6)$. Find the magnitude of the moment of the force about the point $Q(4, -5, 9)$. Assume the displacement is measured in metres.

[9 marks]

Q3. (a) A function is described by the equation $3x^3 + 7x^2y - y^2 = 5$

Find the equation of the tangent line to this curve at the point $(-1, 2)$.

[10 marks]

(b) A spherical balloon is being inflated at the rate of $12\text{cm}^3\text{s}^{-1}$. Find the rate of change of the surface area when the balloon has a radius of 7cm.

[9 marks]

(c) The function $y = y(x)$ is defined by the equations

$$x = x(t) = t^2 \quad ; \quad y = y(t) = 3\sqrt[3]{t^3}$$

find the value of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the point $(4, 6)$.

[6 marks]

Q4. (a) Determine each of the following integrals:

$$(i) \int \frac{1}{\sqrt{3+2x-x^2}} dx$$

$$(ii) \int_{0.5}^{1.5} xe^x dx$$

[10 marks]

(b) The volume V of a gas increases from 0.35m^3 to 0.75m^3 . Determine the work done by the gas if the law governing the expansion is $PV^{1.4} = 740$, where P is the pressure.

[5 marks]

(c) Determine

(i) the area enclosed by the curve $y = 3x^2 + 1$, the x -axis, and the ordinates at $x = 0$ and $x = 4$.

(ii) the coordinates of the centroid of this area.

[10 marks]