MATH7016: 20% Written Assessment Questions

Ordinary Differential Equations

1. (D) Consider an initial value problem

$$\frac{dy}{dx} = F(x,y); \ y(x_0) = y_0.$$

Give a reason why a numerical method might have to be used to approximate values of y(x) for $x > x_0$.

[5 Marks]

- 2. (M) Formulate the initial value problem(s) for the following:
 - (a) the displacement of a body, s(t), subject to a constant force F; given an initial displacement of 0 and initial speed of u.
 - (b) the displacement of a spring, x(t), after a time t; given an initial displacement of A and initial speed of u.
 - (c) the displacement of a damped harmonic oscillator, x(t), after a time t; given an initial displacement of A and initial speed of u.
 - (d) the displacement, x(t), of a of a free-falling body subject to a drag force proportional to either the speed or the speed-squared. The initial displacement and initial speed are both zero.

[7 Marks Each]

Taylor Series

- 3. (P) Calculate the first four terms of the Maclaurin Series of:
 - (a) $f(x) = e^x$.
 - (b) $f(x) = \sin x$.
 - (c) $f(x) = \cos x$.
 - (d) $f(x) = \ln(1+x)$.

[4 Marks Each]

4. (D) Given the Taylor Series Formula for y = y(x) near x = a:

$$y(x) = \sum_{i=0}^{\infty} \frac{y^{(i)}(a)}{i!} (x-a)^i,$$

derive the first three terms for $x = x_1 = x_0 + h$.

[5 Marks]

Euler's Method

5. (M) Consider an initial value problem

$$\frac{dy}{dx} = F(x,y); \quad y(x_0) = y_0.$$

(a) What two things do we know about the graph y = y(x)?

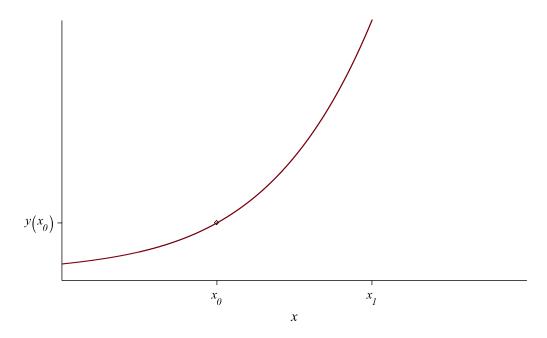
Euler's Method uses the tangent to the curve at $x = x_0$ to approximate the y-value at $x = x_1 = x_0 + h$.

(b) Use

$$y - y_1 = m(x - x_1) (1)$$

to find the equation of the tangent at $x = x_0$.

- (c) Find the value of y at $x = x_0 + h$ in terms of $y(x_0)$, h, and $F(x_0, y_0)$.
- (d) Draw the tangent at $(x_0, y(x_0))$, $x_1 = x_0 + h$ as well as y_1 . Also show the error, $\Delta y = |y(x_1) y_1|$.



(e) Using the above graph, use the fact that

$$\frac{dy}{dx} = \text{slope} = \frac{\uparrow}{\rightarrow},$$

to derive:

$$y_1 = y_0 + h \cdot F(x_0, y_0).$$

[12 Marks]

6. (M) Show, with the aid of a diagram, how a large second derivative causes problems for Euler's Method.

[3 Marks]

7. (P) Consider an initial value problem

$$\frac{dy}{dx} = F(x,y); \quad y(x_0) = y_0.$$

 $(\mathrm{P.27},\,\mathrm{Q.}\ 1\text{-}10,\,\mathrm{use}$ Euler's Method. $\mathrm{P.33},\,\mathrm{Q.}\ 1(\mathrm{a}))$

- (a) Use Euler's Method with a step-size of h to approximate $y_3 = y(x_0 + 3h)$.
- (b) If the exact solution is given by y(x), find the error in the approximation.

[7 Marks per IVP]

8. (M) Consider an initial value problem

$$\frac{dy}{dx} = F(x,y); \quad y(x_0) = y_0.$$

Using Euler's Method with a step-size of h, it can be shown that an upper bound for the local error:

$$\varepsilon = \frac{\|y''\|_{\max}h^2}{2},$$

where $||y''||_{\text{max}}$ is the maximum of the second derivative between $x = x_0$ and $x = x_1$.

- (a) What does it mean to say that the local error is $\mathcal{O}(h^2)$?
- (b) Show that if we use Euler's Method to approximate $y(x_n) = y(x_0 + n \cdot h)$, that the global error is $\mathcal{O}(h)$.
- (c) What is the effect on the local error if we quarter the step-size?
- (d) What is the effect on the global error if we half the step-size?

[7 Marks]

9. (D) Where m and c are constants, consider the initial value problem

$$\frac{dy}{dx} = m; \quad y(0) = c.. \tag{2}$$

- (a) Use anti-differentiation to solve the initial value problem.
- (b) What does the graph of y(x) look like?
- (c) Use Euler's Method to approximate $y_1 = y(h)$.
- (d) What is the error?
- (e) Either using the exact solution y(x), or the differential equation, calculate the second derivative of y(x). Why does this mean that the error is zero?

[9 Marks]

Three Term Taylor Method

10. (D) Consider an initial value problem

$$\frac{dy}{dx} = F(x,y); \quad y(x_0) = y_0.$$

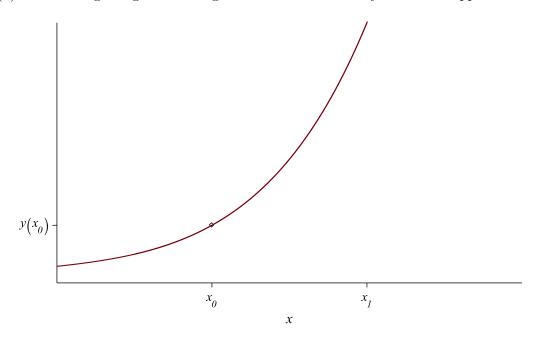
The Three-Term-Taylor Method uses the 'tangent-parabola' to the curve at $a = x_0$ to approximate the y-value at $x = x_1 = x_0 + h$.

(a) Use the first three terms of the Taylor Series

$$f(x) \approx y(a) + y'(a)(x - a) + \frac{y''(a)}{2}(x - a)^2$$
(3)

to find the equation of the 'tangent-parabola' near $a = x_0$.

- (b) Describe how to find the second derivative, y''(x).
- (c) Find the value of y at $x = x_1 = x_0 + h$ in terms of $y(x_0)$, h, $y'_0 := F(x_0, y_0)$ and $y''_0 = y''(0)$.
- (d) Draw a rough diagram showing how the Three Term Taylor Method approximates $y(x_1)$.



[8 Marks]

11. (M) Consider an initial value problem

$$\frac{dy}{dx} = F(x,y); \quad y(x_0) = y_0.$$

(P.27, Q. 1-10, use the Three Term Taylor Method.)

- (a) Use the Three Term Taylor Method with a step-size of h to approximate $y_3 = y(x_0 + 3h)$.
- (b) If the exact solution is given by y(x), find the error in the approximation.

[17 Marks per IVP]

12. (M) Consider an initial value problem

$$\frac{dy}{dx} = F(x,y); \quad y(x_0) = y_0.$$

Using the Three Term Taylor Method with a step-size of h, it can be shown that an upper bound for the $local\ error$:

$$\varepsilon = \frac{\|y'''\|_{\max}h^3}{3!},$$

where $||y'''||_{\text{max}}$ is the maximum of the third derivative between $x = x_0$ and $x = x_1$.

- (a) What does it mean to say that the local error is $\mathcal{O}(h^3)$?
- (b) Show that if we use the Three Term Taylor Method to approximate $y(x_n) = y(x_0 + n \cdot h)$, that the global error is $\mathcal{O}(h^2)$.
- (c) What is the effect on the local error if we half the step-size?
- (d) What is the effect on the global error if we quarter the step-size?

[7 Marks]

13. (D) Where $a \neq 0$, b and c are constants, consider the initial value problem

$$\frac{dy}{dx} = 2ax + b; \quad y(0) = c, \tag{4}$$

- (a) Use anti-differentiation to solve the initial value problem.
- (b) What does the graph of y(x) look like?
- (c) Use the Three Term Taylor Method to approximate $y_1 = y(h)$.
- (d) What is the error?
- (e) Either using the exact solution y(x), or the differential equation, calculate the third derivative of y(x). Why does this mean that the error is zero?

[12 Marks]

Heun's Method

14. (P) Consider an initial value problem

$$\frac{dy}{dx} = F(x,y); \quad y(x_0) = y_0.$$

Heun's Method Method uses two slopes — one calculated from (x_0, y_0) and another calculated from $(x_1, y_1^0) \approx (x_1, y(x_1))$.

- (a) i. How is y_1^0 found?
 - ii. How is y_1 found?
 - iii. How is y_2^0 found?
- (b) Consider the formula:

$$y_{i+1} = y_i + h \cdot \frac{F(x_i, y_i) + F(x_{i+1}, y_{i+1}^0)}{2}.$$

- i. What does $F(x_i, y_i)$ represent?
- ii. What does $F(x_{i+1}, y_{i+1}^0)$ represent?
- iii. Why is the second term divided by two?

[8 Marks]

15. (P) Consider an initial value problem

$$\frac{dy}{dx} = F(x,y); \quad y(x_0) = y_0.$$

(P.27, Q. 1-10, use Heun's Method. P.33, Q.1 (b))

- (a) Use Heun's Method with a step-size of h to approximate $y_3 = y(x_0 + 3h)$.
- (b) If the exact solution is given by y(x), find the error in the approximation.

[14 Marks per IVP]

16. (M) Consider an initial value problem

$$\frac{dy}{dx} = F(x,y); \quad y(x_0) = y_0.$$

Using Heun's Method Method with a step-size of h, it can be shown that the local error is $\mathcal{O}(h^3)$.

- (a) What does this mean?
- (b) Show that if we use Heun's Method to approximate $y(x_n) = y(x_0 + n \cdot h)$, that the global error is $\mathcal{O}(h^2)$.
- (c) Therefore the global error for Heun's Method has the same order error as the Three Term Taylor Method. Why would you prefer to use Heun's Method?
- (d) What is the effect on the local error if we quarter the step-size?
- (e) What is the effect on the global error if we half the step-size?

[9 Marks]

17. (D) Where $a \neq 0$, b and c are constants, consider the initial value problem

$$\frac{dy}{dx} = 2ax + b; \quad y(0) = c, \tag{5}$$

- (a) Use anti-differentiation to solve the initial value problem.
- (b) What does the graph of y(x) look like?
- (c) Use Heun's Method to approximate $y_1 = y(h)$.
- (d) What is the error?
- (e) Either using the exact solution y(x), or the differential equation, calculate the third derivative of y(x). Why does this mean that the error is zero?

[13 Marks]

Second Order Differential Equations

18. (P) Write the following second order ode as two first order problems. (P. 39, Q. 1)

$$\frac{d^2y}{dx^2} = F\left(x, y, \frac{dy}{dx}\right); \ y(x_0) = y_0, \ y'(x_0) = y'_0.$$

[7 Marks]

19. (M) Consider an initial value problem

$$\frac{d^2y}{dx^2} = F\left(x, y, \frac{dy}{dx}\right); \ y(x_0) = y_0, \ y'(x_0) = y'_0.$$

Use Euler's Method with a step-size of h to approximate $y_3 = y(x_0 + 3h)$.

- (a) P.39, Q. 1(a) estimate y(0.6) using h = 0.2.
- (b) P.39, Q. 1(b) let m = 2 and a = 0.5. Find s(3) using h = 1.
- (c) P.39, Q. 1(c) let m = 1, $\lambda = 5$, k = 6. Find x(0.3) using h = 0.1.
- (d) P.39, Q. 1(d) estimate y(1.5) using h = 0.5.

[16 Marks Each]

20. (D) Consider an initial value problem

$$\frac{d^2y}{dx^2} = F\left(x, y, \frac{dy}{dx}\right); \ y(x_0) = y_0, \ y'(x_0) = y'_0.$$

Use Heun's Method with a step-size of h to approximate $y_2 = y(x_0 + 2h)$.

- (a) P.39, Q. 1(a) estimate y(0.5) using h = 0.25.
- (b) P.39, Q. 1(b) let m = 2 and a = 0.5. Find s(2) using h = 1.
- (c) P.39, Q. 1(c) let m = 1, $\lambda = 5$, k = 6. Find x(0.4) using h = 0.2.
- (d) P.39, Q. 1(d) estimate y(0.2) using h = 0.1.

[20 Marks Each]

 $Useful\ Formulae$

A tables page will also be provided.

$$y(x) = \sum_{i=0}^{\infty} \frac{y^{(i)}(0)}{i!} x^i$$

$$y(x) = \sum_{i=0}^{\infty} \frac{y^{(i)}(a)}{i!} (x - a)^i$$

$$y_{i+1} = y_i + h \cdot F(x_i, y_i)$$

$$y_{i+1} = y_i + h \cdot y_i + \frac{h^2}{2} \cdot y_i''$$

$$y_{i+1}^{0} = y_i + h \cdot F(x_i, y_i)$$

$$y_{i+1} = y_i + h \cdot \frac{F(x_i, y_i) + F(x_{i+1}, y_{i+1}^{0})}{2}$$