1. (a) i. Simplify the following expression as much as possible

$$\frac{x^2 - 16}{x - 4}.$$

ii. Solve for y:

$$\frac{3+5y}{y} = 2y.$$

iii. Write

$$\left(\frac{a^7a^3}{a^2}\right)^3$$

in the form a^p , where p is a rational number.

[11 Marks]

(b) Solve for x:

i.
$$4^{1-2x} = 3^{4x+1}$$
.

ii.
$$\log_5(x+7) + \log_5(x-3) = 2 \log_5(x)$$

[10 Marks]

(c) Suppose you have an alphabet of size 26 and you want at least 2,000,000 distinct passwords. What should the minimum length restriction on your passwords?

[4 Marks]

2. (a) Simplify $A \cup \overline{(A \cap \overline{B})}$ using only *laws of sets*. Identify the laws used in each step of your solution.

[8 Marks]

(b) Let $A = \{1, 2, 3, 4, 5\}$. Define a relation R on A by the following:

$$R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4), (5,5)\}.$$

You may assume that R is a *transitive* relation.

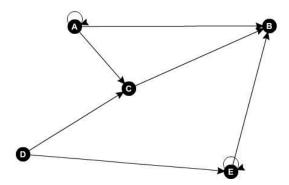
- i. Graphically represent the relation R using a digraph.
- ii. Hence, or otherwise, determine if R is:
 - A. reflexive. Justify your answer.
 - B. symmetric. Justify your answer.
- iii. Is R an equivalence relation? If you answer yes, write down the equivalence classes of R. If you answer no, justify your answer.

[8 Marks]

- (c) Consider $\{0,1\}^6$ the bit strings of length six and let $U = \{a,b,c,d,e,f\}$.
 - i. Let $X \subset U$ be given by $X = \{a, b, c, f\}$. What is the bit string representation of X?
 - ii. How many bit strings of length six are there?
 - iii. Hence, or otherwise, write down $|\mathcal{P}(U)|$.
 - iv. How many subsets of size two does U have?

[9 Marks]

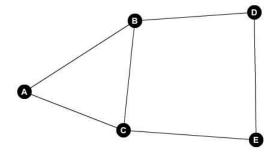
3. (a) Consider the following digraph:



- i. Write down the set of vertices V and the set of edges E.
- ii. The set E is a relation on V. Is this relation reflexive? Justify your answer.

[5 Marks]

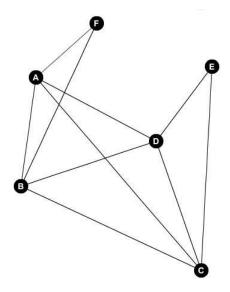
- (b) Consider an undirected graph G.
 - i. What is a Hamiltonian Cycle on G?
 - ii. State Dirac's Theorem.
 - iii. Is it possible for a graph to have a Hamiltonian Cycle without satisfying the conditions of Dirac's Theorem?
 - iv. Find a Hamiltonian Cycle in the graph below:



v. Does this graph satisfy the conditions of Dirac's Theorem? Justify your answer.

[10 Marks]

(c) Consider a computer network given by the following (undirected) graph:



- i. Give the degree of each vertex.
- ii. Is the graph connected? Give a reason for your answer.
- iii. Is the graph a tree? Give a reason for your answer.
- iv. Does the graph have an Euler Cycle? If yes, either justify your answer or find an Euler Cycle. If no, explain your answer.
- v. Does the graph have a Hamiltonian Cycle? If yes, find one. If not, explain your answer.

[10 Marks]

4. (a) Let $X = \{0, 1, 2, 3, 4\}$ and $Y = \{8, 9, 10, \dots, 16\}$. Define $f: X \to Y$ as f(x) = 2x + 8. List the ordered pairs of the relation that define this function.

[4 Marks]

(b) Show that the function $f: \mathbb{N} \to \mathbb{N}$ given by f(n) = n + 2 in not onto.

[4 Marks]

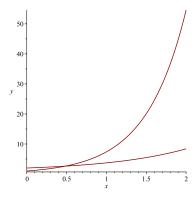
- (c) Let f be the function that maps strings of characters and blank spaces onto strings of characters by removing all blank spaces and vowels. For example, f("dog cat") = "dgct". Let g be the function that maps strings of characters onto integers such that the value of a string is simply the number of characters (including blanks) in the string.
 - i. What is f("Michael D Higgins")?
 - ii. What is g("Michael D Higgins")?
 - iii. What is $(g \circ f)$ ("Michael D Higgins")?

[6 Marks]

- (d) Let $B = \{0, 1\}$. There are four functions $B \to B$. For each of the four functions:
 - i. List the ordered pairs of the relation that define the function,
 - ii. Represent the function using either an arrow diagram or a graph.

[8 Marks]

(e) Below see a plot of the graphs of the $\mathbb{R} \to \mathbb{R}$ functions $f(x) = 1 + e^x$ and $g(x) = e^{2x}$. Copy briefly into your answer booklet and label each curve appropriately:



[3 Marks]

Tables

Indices and Logarithms

$$a^{p}a^{q} = a^{p+q}$$

$$\frac{a^{p}}{a^{q}} = a^{p-q}$$

$$(a^{p})^{q} = a^{pq}$$

$$a^{0} = 1$$

$$a^{-p} = \frac{1}{a^{p}}$$

$$a^{\frac{1}{q}} = \sqrt[q]{a}$$

$$a^{\frac{p}{q}} = \sqrt[q]{(a)^{p}} = (\sqrt[q]{a})^{p}$$

$$(ab)^{p} = a^{p}b^{p}$$

$$(\frac{a}{b})^{p} = \frac{a^{p}}{b^{p}}$$

$$\log_a(xy) = \log_a x + \log_a y \qquad a^x = y \Leftrightarrow \log_a y = x$$

$$\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y \qquad \log_a\left(a^x\right) = x$$

$$\log_a\left(x^q\right) = q\log_a x \qquad a^{\log_a x} = x$$

$$\log_a 1 = 0 \qquad \log_b x = \frac{\log_a x}{\log_a b}$$

$$\log_a\left(\frac{1}{x}\right) = -\log_a x$$

 $\log_a 1 = 0$

Sets

Name	Equality	
Double Complement Law	$\overline{(\overline{A})} = A$	
Identity Laws	$A \cap U = A$	$A\cup\varnothing=A$
Annihilation Laws	$A \cup U = U$	$A\cap\varnothing=\varnothing$
Inverse/Complement Laws	$A\cup\overline{A}=U$	$A\cap \overline{A}=\varnothing$
Idempotent Laws	$A \cup A = A$	$A \cap A = A$
Commutative Laws	$A \cup B = B \cup A$	$A\cap B=B\cap A$
DeMorgans Laws	$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$	$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$
Absorption Laws	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$
Associative Laws	$(A\cap B)\cap C=A\cap (B\cap C)$	$(A \cup B) \cup C = A \cup (B \cup C)$
Distributive Laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$