MATH7016: 20% Written Assessment 1 [Ex 60 Marks]

N	9	m	10	٠.

1.	Consider an initial value problem
	$dy = F(A, A) \cdot F(A, A)$
	$\frac{dy}{dt} = F(t,y); y(t_0) = y_0.$
	Give a reason why a numerical method might have to be used to approximate values of $y(t)$. [2 Marks]
	Solution:
2.	Consider the following:
	the displacement, $x(t)$, of a of a body falling under gravity subject to a drag force proportional to the speed-squared. The initial displacement and initial speed are both zero.
	Write this second order initial value problem as an equivalent system of first order initial value problems.
	[7 Marks]
	Solution:

[4 Marks]

3. Calculate the first four terms of the Maclaurin Series of $y(x) = e^x$.

4. Consider an initial value problem

$$\frac{dy}{dx} = F(x,y); \ y(x_0) = y_0.$$

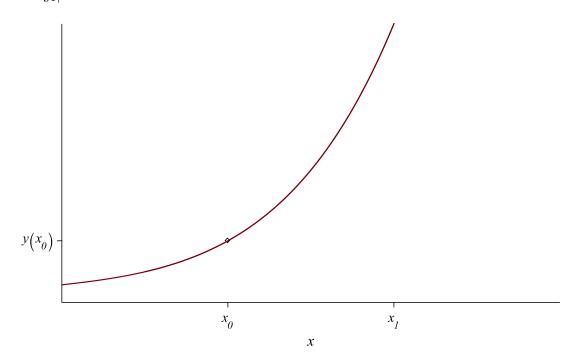
Euler's Method uses the tangent to the curve at $x=x_0$ to approximate the y-value at $x=x_1=x_0+h$.

(a) Use

$$y - y_1 = m(x - x_1) (1)$$

to find the equation of the tangent at $x = x_0$ in terms of x_0 , y_0 and $F(x_0, y_0)$.

- (b) Find the value of y at $x = x_0 + h$ in terms of $y(x_0)$, h, and $F(x_0, y_0)$.
- (c) Draw the tangent at $(x_0, y(x_0))$, $y(x_1)$ as well as y_1 . Also show the error, $\Delta y = |y(x_1) y_1|$.



(d) Show, with the aid of a diagram, how a large second derivative causes problems for Euler's Method.

[11 Marks]

Q. 3 Solution Continued:

5. Consider an initial value problem, with the derivative independent of y:

$$\frac{dy}{dx} = F(x); \quad y(x_0) = y_0.$$

Using Heun's Method with a step-size of h, it can be shown that an upper bound for the local error:

$$\varepsilon = \frac{\|y'''\|_{\max}h^3}{12},$$

where $||y'''||_{\text{max}}$ is the maximum of the third derivative between $x = x_0$ and $x = x_1$.

- (a) What does it mean to say that the local error is $\mathcal{O}(h^3)$?
- (b) Produce a rough argument that shows if we use Heun's Method to approximate $y(x_n) = y(x_0 + n \cdot h)$, that the global error is $\mathcal{O}(h^2)$.
- (c) What is the effect on the global error if we quarter the step-size?

[6 Marks]

6. Consider an initial value problem

$$\frac{dy}{dt} = -0.06\sqrt{y(t)}; \ y(0) = 3.$$

This models the height, y (in metres), of liquid in a cylindrical tank a time t (in minutes) after opening a valve at the base.

- (a) Use Heun's Method with a step-size of 0.5 to approximate y(1.5).
- (b) If the exact solution is given by $y(t) = (\sqrt{3} 0.03t)^2$, find the error in the approximation. [14 Marks]

7. Consider the initial value problem

$$\frac{d^2\theta}{dt^2} + 0.1\sin(\theta(t)) = 0; \ \theta(0) = \pi/4, \ \theta'(0) = 0.$$

This models the angular displacement, θ (in radians), of a pendulum a time t (in seconds) after being released from rest from a 45° C angle.

Use Euler's Method with a step-size of 0.5 to approximate $\theta(1)$.

[16 Marks]

Rough Work:

 $Useful\ Formulae$

A tables page will also be provided.

$$y(x) = y(0) + y'(0)x + \frac{y''(0)}{2!}x^2 + \frac{y'''(0)}{3!}x^3 + \cdots$$

$$y(x) = y(a) + y'(a)(x - a) + \frac{y''(a)}{2!}(x - a)^2 + \frac{y'''(a)}{3!}(x - a)^3 + \cdots$$

$$y_{i+1} = y_i + h \cdot F(x_i, y_i)$$

$$y_{i+1} = y_i + h \cdot y_i' + \frac{h^2}{2} \cdot y_i''$$

$$y_{i+1}^{0} = y_i + h \cdot F(x_i, y_i)$$

$$y_{i+1} = y_i + h \cdot \frac{F(x_i, y_i) + F(x_{i+1}, y_{i+1}^{0})}{2}$$

Runge-Kutta Notation

$$y_{i+1} = y_i + k_1 \cdot h$$

where

$$k_1 = F(x_i, y_i)$$

$$y_{i+1} = y_i + \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right) \cdot h$$

where

$$k_1 = F(x_i, y_i)$$

 $k_2 = F(x_i + h, y_i + k_1 h)$