Exercises for Rounding Error

Recall, if z = f(x, y), and $x = x_0 \pm \Delta x$, $y = y_0 \pm \Delta y$, then the calculation of z is $z_0 = f(x_0, y_0)$, and the error in this calculation is approximately:

$$\Delta z \approx \left| \frac{\partial z}{\partial x} \right| \Delta x + \left| \frac{\partial z}{\partial y} \right| \Delta y.$$

This approximation is rough so round this approximation to one significant figure. Round the calculation to the same precision/number of decimal places. Include units as appropriate.

- 1. Suppose an engineer uses the formula $f(x) = x^{10}$ with a value of $x \approx 10$ (correct to one decimal place).
 - (a) Explain why if $x \approx 10$ is correct to one decimal place, that the rounding error $\Delta x = 0.05$.
 - (b) Use **differentials** to estimate the error in their calculation, Δf . Present your answer in the form $f = f_0 \pm \Delta f$. **Ans:** $f = (10,000,000,000 \pm 500,000,000)$.
 - (c) Estimate the percentage error in this calculation. Ans: 5%
- 2. Suppose an engineer uses the formula $g(x) = \sqrt{x}$ with a value of $x \approx 16$ (correct to the nearest whole number).
 - (a) Explain why if $x \approx 16$ is correct to the nearest whole number, that the rounding error $\Delta x = 0.5$.
 - (b) Use **differentials** to estimate the error in their calculation, Δg . Present your answer in the form $g = g_0 \pm \Delta g$. **Ans:** $g = 4.00 \pm 0.06$
 - (c) Estimate the percentage error in this calculations. Ans: 1.5%
- 3. If a loaded beam has a bending moment, in kN m, given by

$$M(x) = x^3 - 2x^2 + 8x,$$

estimate the error in the calculation of the bending moment if we round to one decimal place at x = 1.

- (a) Explain why if $x \approx 1$ is correct to one decimal place, that the rounding error $\Delta x = 0.05$.
- (b) Use **differentials** to estimate the error in their calculation, ΔM . Present your answer in the form $M = M_0 \pm \Delta M$. **Ans:** $M = (7.0 \pm 0.4)$ kN m.
- (c) Estimate the percentage error in this calculation. Ans: 5.7%.
- 4. Winter 2018 An engineer wishes to calculate the area of a circle. The area of a circle is given by

$$A = \pi r^2$$
.

He measures the radius to be 9.6 m with a rounding error of 5 cm = 0.05 m. Rather than using a good approximation to π , he uses 3.14 which has a rounding error of approximately 0.002.

- (a) Use **differentials** to estimate the error in his calculation, ΔA , caused by these errors of measurement and of rounding. Present your answer in the form $A = A_0 \pm \Delta A$. **Ans**: $A = (289 \pm 3) \text{ m}^2$
- (b) What is the percentage error in this calculation? Ans: 1.0%