

Spring 2020
MATH7016 Ungraded Concept MCQ VI

General Instructions: Read carefully. Open Book. Circle the one correct answer.

Name:

1. Suppose you want to produce a table of t -values from $t = 0$ to (about) $t = 10$, in steps of $h = 0.1$. Which is *not* a suitable ‘stopping rule’:
 - A. `while dblt < 10`
 - B. `until dblt > 10`
 - C. `until dblt = 10`
 - D. `until abs(dblt-10)<0.1`
2. Which of the following statements are *true*:
 - A. We can analytically solve $\frac{dy}{dx} = \frac{\sin x}{x}$.
 - B. Numerical Methods are more accurate than Analytical Methods (MATH7005 & MATH7006).
 - C. The exact solution of some initial value problems can be found with zero error.
 - D. When a differential equation does not have an exact solution, we have to use a numerical method.
3. Which of the following statements are *true*:
 - A. The local error in an approximation is the sum of the global errors.
 - B. In general, increasing the step-size reduces the local and global errors.
 - C. The global error in an approximation is the sum of the local errors.
 - D. If the global error is zero the local errors are also zero.
4. Which of the following statements are true about *Runge-Kutta Methods*
 - A. When implementing RK in VBA, the k_i -values can be calculated outside of the loop.
 - B. When implementing RK in VBA, I recommend that the k_i -values be calculated after “next x , next y ”
 - C. When implementing RK in VBA, I recommend that the k_i -values be calculated before “next x , next y ”
 - D. It is easy to implement RK on the worksheet without using VBA.
5. Which of the following is true about a *boundary value problem*:
 - A. We can always find the slope $v(0)$ after two shots.
 - B. If we are looking at a BVP on $[x_0, x_n]$, we are aiming to have the ‘global error’
$$|y(x_n) - y_n| = 0.$$
 - C. All local and global errors are zero when we use the shooting method.
 - D. Given an initial value problem, $y' = F(x, y)$, $y(x_0) = y_0$, we can always turn it into a BVP with an additional boundary condition $y(x_1) = y_1$.
6. Which of the following is true about a *boundary value problem*:
 - A. we know the values of y and some of its derivatives at a *single* point x_0
 - B. we know the values of y (and perhaps some of its derivatives) at *multiple* points x_1, x_2, \dots
 - C. we can use ‘one’ ordinary Euler Method to solve the boundary value problem $y'' = F(x, y, y')$
 - D. finding the displacement $x(t)$ of a damped harmonic oscillator t seconds after being released with $x(0) = 1$ and $x'(0) = 0$ is a boundary value problem.