

MATH7016: 20% Written Assessment 1 [Ex 54 Marks]

Name: Marking Scheme

1. Consider the statement:

There is a need for numerical methods in the study of differential equations that arise in engineering problems.

Do you agree or disagree with this statement?

[1 Mark]

Justify your answer.

[4 Marks]

Solution: I agree. (i)

Some differential equations may not be solved analytically/in terms of elementary functions.
Sometimes derivatives are given in terms of data rather than a formula.

2. Consider the displacement, $x(t)$ (in metres), of a body of mass m (in kg), after t seconds, subject to two forces

- a constant force of +10 N, and
- a damping force, proportional to the velocity.

The initial displacement and initial velocity are both zero.

Formulate this problem as a second order initial value problem.

[6 Marks]

Solution:

$$m \cdot \frac{d^2x}{dt^2} = +10 - \lambda \frac{dx}{dt} \quad ; \quad x(0) = 0, x'(0) = 0$$

3. Calculate the first two non-zero terms of the Maclaurin Series of $y(t) = \cos t$.

[4 Marks]

Solution:

$$y(t) = y(0) + y'(0)t + \frac{y''(0)}{2!}t^2 + \frac{y'''(0)}{3!}t^3$$

$$y(0) = \cos 0 = 1 \quad ①$$

$$y'(t) = \sin t \Rightarrow y'(0) = 0 \quad ①$$

$$y''(t) = -\cos t \Rightarrow y''(0) = -1 \quad ①$$

$$\Rightarrow \cos t \approx 1 + 0t - \frac{1}{2}t^2$$

$$= 1 - \frac{1}{2}t^2 \quad ① \quad t \geq 3$$

4. Consider an initial value problem

$$\frac{dy}{dx} = F(x, y); \quad y(0) = 0.$$

Euler's Method with step $h = 0.5$ uses the tangent to the curve at $x = 0$ to approximate the y -value at $x = x_1 = 0 + 0.5 = 0.5$.

- (a) Write down, in terms of h and F , the formula for y_1 , the Euler Method approximation $y(0.5) \approx y_1$.

- (b) Name two factors which influence the Euler Method local error:

$$\varepsilon^L = |y(0.5) - y_1|.$$

- (c) Give two strategies for getting a more accurate approximation to $y(x_1)$.

- (d) For one of these strategies, give one disadvantage of that strategy.

[9 Marks]

Solution:

- a) $y_1 = 0 + h F(0, 0)$
- b) Step-size h and second derivative
- c) Smaller step-size or use TTT or Heun
- d) Smaller-stepsize \Rightarrow more calculations
 TTT \Rightarrow implicit differentiation

5. Consider an initial value problem:

$$\frac{dy}{dx} = F(x); \quad y(x_0) = y_0.$$

Using the Three Term Taylor Method with a step-size of h , it can be shown that the local error at step i , ε_i^L satisfies:

$$|\varepsilon_i^L| \leq \frac{|y_i'''|_{\max} h^3}{6},$$

where $|y_i'''|_{\max}$ is the maximum of the absolute value of the third derivative between $x = x_i$ and $x = x_{i+1}$.

- (a) What does it mean to say that the local error is $\mathcal{O}(h^3)$?
- (b) Show that if we use the Three Term Taylor Method to approximate $y(x_n) = y(x_0 + n \cdot h)$, that the global error is $\mathcal{O}(h^2)$.
- (c) What is the effect on the global error if we quarter the step-size?
- (d) The local and global errors analysed here are *truncation errors*; errors arising from deficiencies in the method used. In practical terms, what is the other main source of error when approximating solutions of differential equations?

[10 Marks]

Solution:

a) $|\varepsilon_i^L| \leq K \cdot h^3$ or (absolute value of) local error is $|\varepsilon_i^L| = K \cdot h^3$ (1) (less than or) equal to a multiple of h^3

b) Let $L = nh \Rightarrow x_n - x_0 = nh = L \Rightarrow n = \frac{L}{h}$

$$\begin{aligned} |\varepsilon^G| &= |\varepsilon_1^L + \dots + \varepsilon_n^L| \leq |\varepsilon_1^L| + \dots + |\varepsilon_n^L| \\ &\leq K_1 h^3 + \dots + K_n h^3 \quad (1) \text{. Let } K_p := \max_i K_i \\ &\leq K_1 h^3 + \dots + K_1 h^3 \quad (1) \\ &= n K_1 h^3 \quad (1) \\ &= \frac{L}{h} K_1 h^3 = L K_1 h^2 \Rightarrow \varepsilon^G \in \mathcal{O}(h^2) \quad (1) \end{aligned}$$

c) reduced by factor of 16 (1)

d) rounding (2)

6. Consider an initial value problem

$$\frac{dV}{dx} = -100e^{-x^2}; V(0) = 80$$

This models the shear force, V (in kN), at a distance x (in metres) along a fixed end beam of span 6 m.

Use Heun's Method with a step-size of 0.1 to approximate $V(0.3)$. Use five significant figures for all calculations.

Solution: $\frac{dV}{dx}$ is independent of $V \rightarrow$ no need for predictor [12 Marks]

$$V_1 = 80 + \frac{0.1}{2} [-100e^{-0^2} - 100e^{-0.1^2}] \approx 70.050 \text{ kN}$$

$$V_2 = 70.05 + \frac{0.1}{2} [-100e^{-0.1^2} - 100e^{-0.2^2}] \approx 60.296 \text{ kN}$$

$$V_3 = 60.296 + \frac{0.1}{2} [-100e^{-0.2^2} - 100e^{-0.3^2}] \approx 50.922 \text{ kN}$$

7. Suppose we have *telemetric* data on the *speed* of a vehicle, collected at 0.1 s intervals. Suppose the first few data points are given by:

t [s]	v [m/s]
0	0
0.1	0.4
0.2	1.1
0.3	2.3
0.4	3.8
0.5	5.2

Can we use this data to *approximate* the distance travelled by the vehicle?

- (a) If yes, use a method you studied in MATH7016 to approximate the distance travelled after $t = 0.5$ s, given that the distance travelled after $t = 0$ s is zero. Use five significant figures for all calculations.
- (b) If no, explain why not.

[8 Marks]

Solution: a) Yes. $\frac{dx}{dt} = v$ ③

Forward Euler

4/5

Euler ① : $x_1 = 0 + 0.1(0) = 0$ ①
 $x_2 = 0 + 0.1(0.4) = 0.04$ ①
 $x_3 = 0.04 + 0.1(1.1) = 0.15$
 $x_4 = 0.15 + 0.1(2.3) = 0.38$ ③
 $x_5 = 0.38 + 0.1(3.8) = 1.16m$ ②

Heun ① : $x_1 = 0 + \frac{0.1}{2}[0+0.4] = 0.02$ ①

$$x_2 = 0.02 + \frac{0.1}{2}[0.4+1.1] = 0.095$$
 ①

$$x_3 = 0.095 + \frac{0.1}{2}[1.1+2.3] = 0.265$$

$$x_4 = 0.265 + \frac{0.1}{2}[2.3+3.8] = 0.57$$

$$x_5 = 0.57 + \frac{0.1}{2}[3.8+5.2] = 1.02m$$
 ②

Rough Work:

111

$$x_1 = 0 + 0.1(0) + \frac{0.1^2}{2} 4 = 0.02 \quad ①$$

$$x_2 = 0.02 + 0.1(0.4) + \frac{0.1^2}{2} [7] = 0.095$$

$$x_3 = 0.095 + 0.1(1.1) + \frac{0.1^2}{2} [12] = 0.265$$

$$x_4 = 0.265 + 0.1(2.3) + \frac{0.1^2}{2} [15] = 0.57$$

$$x_5 = 0.57 + 0.1(5.2) + \frac{0.1^2}{2} [14] = 1.02 \quad ②$$

Useful Formulae

A tables page will also be provided.

$$y(x) = y(0) + y'(0)x + \frac{y''(0)}{2!}x^2 + \frac{y'''(0)}{3!}x^3 + \dots$$

$$y(x) = y(a) + y'(a)(x-a) + \frac{y''(a)}{2!}(x-a)^2 + \frac{y'''(a)}{3!}(x-a)^3 + \dots$$

$$y_{i+1} = y_i + h \cdot F(x_i, y_i)$$

$$y_{i+1} = y_i + h \cdot y'_i + \frac{h^2}{2} \cdot y''_i$$

$$\begin{aligned} y_{i+1}^0 &= y_i + h \cdot F(x_i, y_i) \\ y_{i+1} &= y_i + h \cdot \frac{F(x_i, y_i) + F(x_{i+1}, y_{i+1}^0)}{2} \end{aligned}$$

Runge-Kutta Notation

$$k_1 = F(x_i, y_i)$$

$$y_{i+1} = y_i + h \cdot k_1$$

Where

$$k_1 = F(x_i, y_i) \tag{1}$$

$$k_2 = F\left(\underbrace{x_i + h}_{\text{endpoint of } [x_i, x_i]}, \underbrace{y_i + h \cdot k_1}_{\text{Euler prediction for the endpoint}}\right) \tag{2}$$

$$y_{i+1} = y_i + h \cdot \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)$$