MATHT7016: 20% Written Assessment 1 [Ex 54 Marks]

Name; MU\“\L\N QM

1. Consider the statement

There is a need for numerical methods in the study of d:fferentml equations that
arise in engineering problems.

Do you agree or disagree with this statement?
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Justify your answer.
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2. Consider the displacement, z(t) (in metres), of a body of mass m {in kg), after ¢ seconds,
subject to two forces
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* a constant force of +10 N, and

* a damping force, proportional to the velocity.

The initial displacement and initial velocity are both zero.

Formulate this problem as a second order initial value problem.
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3. Calculate the first two non-zero terms of the Maclaurin Series of y(t) = cost.
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4. Consider an initial value problem

P = Few)s wo =0

Euler's Method with step b = 0.5 uses the tangent to the curve at 2 — 0 to approximate the
y-value at z = g =0+0.5=0.5.

(a) Write down, in terms of h an

d F, the formula for Y1,
y(0.5) = y.

the Buler Method approximation

(b)

Name two factors which influence the Euler Method local error:

b= (y(0.5) — g,

Give two strategies for getting a more accurate approximation o y(

{c)
(d)

331).

For one of these strategies, give one disadvantage of that strategy.
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5. Consider an initial value problem:

D Y e
-fc—=F(f); y{xd) = Yo-

e

Using the Three Term Taylor Method with a step-size of h, it can be shown that the local

error at step 4, &7 satisfies:
" 3
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where |3 |max is the maximum of the absolute value of the third derivative between & = %

and T == Titl-
{a) What does it mean to say that the local error is O(h*)?
(b) Show that if we use the Three Term Taylor Method to approximate y
that the global error i8 O(h?).
(c) What is the effect on the global error if we quarter the step-size?

(d) The local and global errors analysed here are truncation errors; €rrors arising from
deficiencies in the method used. In practical terms, what is the other main source of

error when approximating solutions of differential equations?

(mﬂ) = y(wﬂ TN h)u
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. Consider an initial value problem
dv g2
et —100e™"; V(0) =80

This models the shear force, V (in kN), at a distance z (in metres) along a fixed end beam
of span 6 m,

Use Heun's Method with g step-size of 0.1 to approximate V(0.3). Use five significant figures
for all calculations.
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7. Suppose we have telemetric data on the speed of a vehicle, collected at 0.1 s intervals. Suppose

the first few data points are given by:
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Can we use this data to approzimate the distance travelled by the vehicle?

oximate the distance travelled

(a) If yes, use a method you studied in MATH?7016 to appr
0 s is zero. Use five significant

after t = 0.5 s, given that the distance travelled after ¢t =
figures for all calculations.

(b) If no, explain why not.
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Rough Work:
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Useful Formulae

A tables page will also be provided.

-

Afy(m) =y(0) +3 (O)z + y”z(l{)) 2 + 2:’;_(!@933 SRR

) =) + Y@ o)+ oyt + L e o

Yiz1 = ¥ + b Flzi, i)

! h'2 I
yi+1=yi+h'yi+§“yi

y$+1=yi+h'F(-Th'yi)
F(zi, 1) + F(Tit1, 92
Yirl =Y+ b (20, ) > i+1, Yony)

Runge-Kutta Notation
ki = F(zi Vi)
vier =vi + Rk

Where
ky = F(zi,yi) &)
Enler prediction for the endpoink
et s,
ke =F z; +h ; 'yiJrh'k]_ (2)
S =

endpoint of {4, i)
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iyl =Y+ he (§k1 + §k‘2)



