You are currently browsing the category archive for the ‘C*-Algebras & Operator Theory’ category.

Finally cracked this egg.

Preprint here.

I thought I had a bit of a breakthrough. So, consider the algebra of a functions on the dual (quantum) group . Consider the projection:

.

Define by:

.

Note

.

Note so is a partition of unity.

I know that corresponds to a quasi-subgroup but not a quantum subgroup because is not normal.

This was supposed to say that the result I proved a few days ago that (in context), that corresponded to a quasi-subgroup, was as far as we could go.

For , note

,

is a projection, in fact a group like projection, in .

Alas note:

That is the group like projection associated to is subharmonic. This *should* imply that nearby there exists a projection such that for all … also is subharmonic.

This really should be enough and I should be looking perhaps at the standard representation, or the permutation representation, or … but I want to find the projection…

Indeed …and .

The punchline… the result of Fagnola and Pellicer holds when the random walk is is irreducible. This walk is not… back to the drawing board.

I have constructed the following example. The question will be does it have periodicity.

Where is the permutation representation, , and , is given by:

.

This has (duh), , and otherwise .

The above is still a cyclic partition of unity… but is the walk irreducible?

The easiest way might be to look for a subharmonic . This is way easier… with it is easy to construct non-trivial subharmonics… not with this . It is straightforward to show there are no non-trivial subharmonics and so is irreducible, periodic, but is not a quantum subgroup.

It also means, in conjunction with work I’ve done already, that I have my result:

**Definition** Let be a finite quantum group. A state is *concentrated on a cyclic coset of a proper quasi-subgroup* if there exists a pair of projections, , such that , is a group-like projection, and there exists () such that .

## (Finally) The Ergodic Theorem for Random Walks on Finite Quantum Groups

A random walk on a finite quantum group is ergodic if and only if the driving probability is not concentrated on a proper quasi-subgroup, nor on a cyclic coset of a proper quasi-subgroup.

The end of the previous Research Log suggested a way towards showing that can be associated to an idempotent state . Over night I thought of another way.

Using the Pierce decomposition with respect to (where ),

.

The corner is a hereditary -subalgebra of . This implies that if and for , .

Let . We know from Fagnola and Pellicer that and .

By assumption in the background here we have an irreducible and periodic random walk driven by . This means that for all projections , there exists such that .

Define:

.

Define:

.

The claim is that the support of , is equal to .

We probably need to write down that:

.

Consider for any . Note

that is each is supported on . This means furthermore that .

Suppose that the support . A question arises… is ? This follows from the fact that and is hereditary.

Consider a projection . We know that there exists a such that

.

This implies that , say (note ):

By assumption . Consider

.

For this to equal one every must equal one but .

Therefore is the support of .

Let . We have shown above that for all . This is an idempotent state such that is its support (a similar argument to above shows this). Therefore is a group like projection and so we denote it by and !

Today, for finite quantum groups, I want to explore some properties of the relationship between a state , its density (), and the support of , .

I also want to learn about the interaction between these object, the stochastic operator

,

and the result

,

where is defined as (where by ).

.

An obvious thing to note is that

.

Also, because

That doesn’t say much. We are possibly hoping to say that .

In my pursuit of an Ergodic Theorem for Random Walks on (probably finite) Quantum Groups, I have been looking at analogues of Irreducible and Periodic. I have, more or less, got a handle on irreducibility, but I am better at periodicity than aperiodicity.

The question of how to generalise these notions from the (finite) classical to noncommutative world has already been considered in a paper (whose title is the title of this post) of Fagnola and Pellicer. I can use their definition of periodic, and show that the definition of irreducible that I use is equivalent. This post is based largely on that paper.

## Introduction

Consider a random walk on a finite group driven by . The state of the random walk after steps is given by , defined inductively (on the algebra of functions level) by the associative

.

The convolution is also implemented by right multiplication by the stochastic operator:

,

where has entries, with respect to a basis . Furthermore, therefore

,

and so the stochastic operator describes the random walk just as well as the driving probabilty .

The random walk driven by is said to be *irreducible *if for all , there exists such that (if ) .

The *period *of the random walk is defined by:

.

The random walk is said to be *aperiodic *if the period of the random walk is one.

These statements have counterparts on the set level.

If is not irreducible, there exists a proper subset of , say , such that the set of functions supported on are -invariant. It turns out that is a proper subgroup of .

Moreover, when is irreducible, the period is the greatest common divisor of all the natural numbers such that there exists a partition of such that the subalgebras of functions supported in satisfy:

and (slight typo in the paper here).

In fact, in this case it is necessarily the case that is concentrated on a coset of a proper normal subgroup , say . Then .

Suppose that is supported on . We want to show that for . Recall that

.

This shows how the stochastic operator reduces the index .

A central component of Fagnola and Pellicer’s paper are results about how the decomposition of a stochastic operator:

,

specifically the maps can speak to the irreducibility and periodicity of the random walk given by . I am not convinced that I need these results (even though I show how they are applicable).

## Stochastic Operators and Operator Algebras

Let be a -algebra (so that is in general a virtual object). A -subalgebra is *hereditary *if whenever and , and , then .

It can be shown that if is a hereditary subalgebra of that there exists a projection such that:

.

All hereditary subalgebras are of this form.

*This sandbox is going to take from a variety of sources, mostly Shuzhou Wang.*

## C*-Ideals

Let be a closed (two-sided) ideal in a non-commutative unital -algebra . Such an ideal is self-adjoint and so a non-commutative -algebra . The quotient map is given by , , where is the equivalence class of under the equivalence relation:

.

Where we have the product

,

and the norm is given by:

,

the quotient is a -algebra.

Consider now elements and . Consider

.

The tensor product . Now note that

,

by the nature of the Tensor Product (). Therefore .

### Definition

A WC*-ideal (W for *Woronowicz*) is a C*-ideal such that , where is the quotient map .

Let be the algebra of functions on a classical group . Let . Let be the set of functions which vanish on : this is a C*-ideal. The kernal of is .

Let so that . Note that

and so

.

Note that if . It is not possible that both and are in : if they were , but , which is not in by assumption. Therefore one of or is equal to zero and so:

,

and so by linearity, if vanishes on a subgroup ,

.

In this way, WC*-ideals generalise functions which vanish on distinguished subgroups. In fact, without checking all the details, I imagine that first isomorphism theorem can show that . Let be the ring homomorphism

.

Then , , and so we have the isomorphism of rings, which presumably carries forward to the algebras of functions level…

*Just some notes on the pre-print. I am looking at this paper to better understand this pre-print. In particular I am hoping to learn more about the support of a probability on a quantum group. Flags and notes are added but mistakes are mine alone.*

#### Abstract

From this paper I will look at:

- lattice operations on , for a LCQG (analogues of intersection and generation)

## 1. Introduction

Idempotent states on quantum groups correspond with “subgroup-like” objects. In this work, on LCQG, the correspondence is with *quasi-subgroups *(the work of Franz & Skalski the correspondence was with *pre-subgroups *and *group-like projections*).

Let us show the kind of thing I am trying to understand better.

Let be the algebra of function on a finite quantum group. Let be concentrated on a pre-subgroup . We can associate to a group like projection .

Let, and this is another thing I am trying to understand better, this support, the support of be ‘the smallest’ (?) projection such that . Denote this projection by . Define similarly. That are concentrated on is to say that and .

Define a map by

(or should this be or ?)

We can decompose, in the finite case, .

**Claim: **If is concentrated on , … I don’t have a proof but it should fall out of something like together with the decomposition of above. It may also require that is a trace, I don’t know. Something very similar in the preprint.

From here we can do the following. That is a group-like projection means that:

Hit both sides with to get:

.

By the fact that are supported on , the right-hand side equals one, and by the as-yet-unproven claim, we have

.

However this is the same as

,

in other words , that is remains supported on . As a corollary, a random walk driven by a probability concentrated on a pre-subgroup remains concentrated on .

In May 2017 I wrote down some problems that I hoped to look at in my study of random walks on quantum groups. Following work of Amaury Freslon, a number of these questions have been answered. In exchange for solving these problems, Amaury has very kindly suggested some other problems that I can work on. The below hopes to categorise some of these problems and their status.

## Solved!

- Show that the total variation distance is equal to the projection distance. Amaury has an a third proof. Amaury suggests that this should be true in more generality than the case of being absolutely continuous (of the form for all and a unique ). If the Haar state is no longer tracial Amaury’s proof breaks down (and I imagine so do the two others in the link above). Amaury believes this is true in more generality and says perhaps the Jordan decomposition of states will be useful here.
- Prove the Upper Bound Lemma for compact quantum groups of Kac type. Achieved by Amaury.
- Attack random walks with conjugate invariant driving probabilitys: achieved by Amaury.
- Look at quantum generalisations of ‘natural’ random walks and shuffles. Solved is probably too strong a word, but Amaury has started this study by looking at a generalisation of the random transposition shuffle. As I suggested in Seoul, Amaury says: “One important problem in my opinion is to say something about analogues of classical random walks on (for instance the random transpositions or riffle shuffle)”. Amaury notes that “we are blocked by the counit problem. We must therefore seek bounds for other distances. As I suggest in my paper, we may look at the norm of the difference of the transition operators. The -estimate that I give is somehow the simplest thing one can do and should be thought of as a “spectral gap” estimate. Better norms would be the norms as operators on or even better, the completely bounded norm. However, I have not the least idea of how to estimate this.”

## Results to be Improved

- I have recently received an email from Isabelle Baraquin, a student of Uwe Franz, pointing out a small error in the thesis (a basis-error with the Kac-Paljutkin quantum groups).
- Recent calculations suggest that the lower bound for the random walk on the dual of is effective at while the upper bound shows the walk is random at time order . This is still a very large gap but at least the lower bound shows that this walk does converge very slowly.
- Get a much sharper lower bound for the random walk on the Sekine family of quantum groups studied in Section 5.7. Projection onto the ‘middle’ of the factor may provide something of use. On mature reflection, recognising that the application of the upper bound lemma is dominated by one set of terms in particular, it should be possible to use cruder but more elegant estimates to get the same upper bound except with lighter calculations (and also a smaller — see Section 5.7).

## More Questions on Random Walks

- Irreducibility is harder than the classical case (where ‘not concentrated’ on a subgroup is enough). Can anything be said about aperiodicity in the quantum case? (U. Franz).
- Prove an Ergodic Theorem (Theorem 1.3.2) for Finite Quantum Groups. Extend to Compact Quantum Groups. It is expected that the conditions may be more difficult than the classical case. However, it may be possible to use Diaconis-Van Daele theory to get some results in this direction. It should be possible to completely analyse some examples (such as the Kac-Paljutkin quantum group of order 8).This will involve a study of subgroups of quantum groups as well as
*normal*quantum subgroups and cosets. - Look at a random walk on the Sekine quantum groups with an -dependent driving probability and see if the cut-off phenomenon (Chapter 4) can be detected. This will need good lower bounds for , some cut-off time.
- Convolutions Factorisations of the Random Distribution: such a study may prove fruitful in trying to find the Ergodic Theorem. See Section 6.5.
**Amaury**mentions the problem of considering random walks associated to non-central states (in the compact case). “The difficulty is first to build non-central states (I do not have explicit examples at hand but Uwe Franz said he had some) and second to be able to compute their Fourier transform. Then, the computations will certainly be hard but may still be doable.”- A study of the Cesaro means: see Section 6.6.
- Spectral Analysis: it should be possible to derive crude bounds using the spectrum of the stochastic operator. More in Section 6.2.

## Future Work (for which I do not yet have the tools to attack)

**Amaury/Franz**Something perhaps more accessible is to investigate quantum homogeneous spaces. The free sphere is a noncommutative analogue of the usual sphere and a quantum homogeneous space for the free orthogonal quantum group. We can therefore define random walks on it and the whole machinery of Gelfand pairs might be available. In particular, Caspers gave a Plancherel theorem for Gelfand pairs of locally compact quantum groups which should apply here yielding an Upper Bound Lemma and then the problem boils down to something which should be close to my computations. There are probably works around this involving Adam Skalski and coauthors.**Amaury:**If one can prove a more general total variation distance equal to half one norm result, then Amaury suggests one can consider random walks on compact quantum groups which are not of Kac type. The Upper Bound Lemma will then involve matrices measuring the modular theory of the Haar state and some (but not all) dimensions in the formulas must be replaced by quantum dimensions. The main problem here is to define explicit central states since there is no Haar-state preserving conditional expectation onto the central algebra. However, there are tools from monoidal equivalence to do this.

## Distances between Probability Measures

Let be a finite quantum group and be the set of states on the -algebra .

The algebra has an invariant state , the dual space of .

Define a (bijective) map , by

,

for .

Then, where and , define the total variation distance between states by

.

(Quantum Total Variation Distance (QTVD))

Standard non-commutative machinary shows that:

.

(supremum presentation)

In the classical case, using the test function , where , we have the probabilists’ preferred definition of total variation distance:

.

In the classical case the set of indicator functions on the subsets of the group exhaust the set of projections in , and therefore the classical total variation distance is equal to:

.

(Projection Distance)

In all cases the quantum total variation distance and the supremum presentation are equal. In the classical case they are equal also to the projection distance. Therefore, in the classical case, we are free to define the total variation distance by the projection distance.

## Quantum Projection Distance Quantum Variation Distance?

Perhaps, however, on truly quantum finite groups the projection distance could differ from the QTVD. In particular, a pair of states on a factor of might be different in QTVD vs in projection distance (this cannot occur in the classical case as all the factors are one dimensional).

## Recent Comments