A lecturer in the Department of Mathematics, Munster Technological University.


  1. Tracing the orbitals of the quantum permutation group, 2023.
  2. Analysis for idempotent states on quantum permutation groups, 2023.


  1. A state-space approach to quantum permutations: Exp. Math., Volume 40, Issue 3
    (2022), 628–664, ISSN 0723-0869, https://doi.org/10.1016/j.exmath.2021.12.003.. (earlier preprint available here).
  2. The Frucht property in the quantum group setting: with Teo Banica, Glasgow Mathematical Journal, 1-31. doi:10.1017/S0017089521000380, (earlier preprint available here).
  3. The Ergodic Theorem for Random Walks on Finite Quantum Groups,
    Communications in Algebra, 49:9, 3850-3871, DOI: 10.1080/00927872.2021.1908551, 2021 (earlier preprint available here).
  4. Diaconis–Shahshahani Upper Bound Lemma for Finite Quantum Groups, Fourier
    Anal Appl, 25, 2463-2491, 2019. (earlier preprint available here).
  5. The Transposition Project: Origins, Context and Early Findings: Maryna Lishchynska, Catherine Palmer, Julie Crowley, Katie Bullen, Clodagh Carroll, Patricia Cogan, David Goulding, Mark Hartnett, J.P. McCarthy, Violeta Morari, Marie Nicholson, Grainne Read, MSOR Connections, Vol 17, No 2 (2019)


  1. C*-days in Prague, May 2023.
  2. Quantum Groups & Interactions, Workshop, University of Glasgow, May 2023.
  3. Non-local games seminar, May 2023
  4. The Kawada-Ito theorem for quantum groups, UCC BRCI mini-Symposium on Noncommutative Probability & Quantum Information, October 2022,
  5. The Frucht property in the quantum group settingQuantum Group Seminar, January 2022
  6. Quantum Permutations ReBorn, Quantum Group Seminar (of Teo Banica), Universite de
    Cergy-Pontoise, Paris.
  7. Pure Mathematics: What’s the Point?: The Extremely Paradoxical Extreme Utility
    of Pure Mathematics in Science , School of Science and Informatics Seminar, MTU.
  8. The Ergodic Theorem for Random Walks: from Finite Groups, to Group Algebras,
    to Finite Quantum Groups, Munster Groups 2019, WIT.
  9. Some Unresolved and Unexplored Aspects of Random Walks on Quantum Groups:
    Seminaire d’Analyse Fonctionnelle, Besancon.
  10. Contexts and Concepts: A Case Study of Mathematics Assessment for Civil & Environmental
    Engineering, Conversations on Teaching and Learning Winter Programme 2018/19, MTU.
  11. The Diaconis-Shahshahani Upper Bound Lemma for Finite Quantum Groups: Irish
    Mathematical Society 2018 Meeting, University College Dublin.
  12. The Diaconis-Shahshahani Upper Bound Lemma for Finite Quantum Groups:
    Topological quantum groups and harmonic analysis Workshop, Seoul National University.
  13. The Philosophy of Quantum Groups: MTU Spring Seminar Series.

Current and Recent Teaching Interests

– Mechanical Engineering (MATH7016)

– Civil & Environmental Engineering (MATH7019, MATH7021)

– Biomedical Engineering & Sustainable Engineering (MATH6015, MATH6040)

– Computing (MATH6055, MATH6000, STAT6000)

– Data Science (DATA9003, DATA8006)

– Industrial Measurement Control (MATH6037, MATH6038)

– Professional Diploma in Mathematics for Teachers (MB5003, MB5014, MB5021)

– Mathematical Studies in University College Cork (MS2001, MS2002, MS3011)

Research Supervision

  • Alan Stack, Decision rules for abandoned football seasons, HDip Data Science & Analytics, 2022.
  • Anand Prabhakar Ambujarajan, Methods of Smoothing Mortality Rates, MSc Data Science & Analytics, 2020.
  • Tushar Kotian, Data Clustering for Sports Betting, MSc Data Science & Analytics, 2020.



– I am a keen user of Math.StackExchangeMathOverflow and MathEducators.StackExchange.