In my pursuit of an Ergodic Theorem for Random Walks on (probably finite) Quantum Groups, I have been looking at analogues of Irreducible and Periodic. I have, more or less, got a handle on irreducibility, but I am better at periodicity than aperiodicity.

The question of how to generalise these notions from the (finite) classical to noncommutative world has already been considered in a paper (whose title is the title of this post) of Fagnola and Pellicer. I can use their definition of periodic, and show that the definition of irreducible that I use is equivalent. This post is based largely on that paper.

## Introduction

Consider a random walk on a finite group driven by . The state of the random walk after steps is given by , defined inductively (on the algebra of functions level) by the associative

.

The convolution is also implemented by right multiplication by the stochastic operator:

,

where has entries, with respect to a basis . Furthermore, therefore

,

and so the stochastic operator describes the random walk just as well as the driving probabilty .

The random walk driven by is said to be *irreducible *if for all , there exists such that (if ) .

The *period *of the random walk is defined by:

.

The random walk is said to be *aperiodic *if the period of the random walk is one.

These statements have counterparts on the set level.

If is not irreducible, there exists a proper subset of , say , such that the set of functions supported on are -invariant. It turns out that is a proper subgroup of .

Moreover, when is irreducible, the period is the greatest common divisor of all the natural numbers such that there exists a partition of such that the subalgebras of functions supported in satisfy:

and (slight typo in the paper here).

In fact, in this case it is necessarily the case that is concentrated on a coset of a proper normal subgroup , say . Then .

Suppose that is supported on . We want to show that for . Recall that

.

This shows how the stochastic operator reduces the index .

A central component of Fagnola and Pellicer’s paper are results about how the decomposition of a stochastic operator:

,

specifically the maps can speak to the irreducibility and periodicity of the random walk given by . I am not convinced that I need these results (even though I show how they are applicable).

## Stochastic Operators and Operator Algebras

Let be a -algebra (so that is in general a virtual object). A -subalgebra is *hereditary *if whenever and , and , then .

It can be shown that if is a hereditary subalgebra of that there exists a projection such that:

.

All hereditary subalgebras are of this form.

Read the rest of this entry »

### Like this:

Like Loading...

## Recent Comments