Let G be a group and let A:=C^*(G)  be the C*-algebra of the group G. This is a C*-algebra whose elements are complex-valued functions on the group G. We define operations on A in the ordinary way save for multiplication

\displaystyle (fg)(s)=\sum_{t\in G}f(t)g(t^{-1}s),

and the adjoint f^*(s)=\overline{f(s^{-1})}. Note that the above multiplication is the same as defining \delta_s\delta_t=\delta_{st} and extending via linearity. Thence A is abelian if and only if G is.

To give the structure of a quantum group we define the following linear maps:

\Delta:A\rightarrow A\otimes A\Delta(\delta_s)=\delta_s\otimes\delta_s.

\displaystyle \varepsilon:A\rightarrow \mathbb{C}\varepsilon(\delta_s)=1.

S:A\rightarrow AS(\delta_s)=\delta_{s^{-1}}.

The functional h:A\rightarrow \mathbb{C} defined by h=\mathbf{1}_{\{\delta_e\}} is the Haar state on A. It is very easy to write down the j_n:

\displaystyle j_n(\delta_s)=\bigotimes_{i=0}^n\delta_s.

To do probability theory consider states \varepsilon,\,\phi on A and form the product state:

\displaystyle \Psi=\varepsilon\otimes\bigotimes_{i=1}^\infty \phi.

Whenever \phi is a state of A such that \phi(\delta_s)=1 implies that s=e, then the distribution of the random variables j_n converges to h.

At the moment we will use the one-norm to measure the distance to stationary:

d(\Psi\circ j_n,h)=\|\Psi\circ j_n-h\|_1.

A quick calculation shows that:

d(\Psi\circ j_n,h)=\sum_{s\neq e}|\phi(\delta_s)|^n.

When, for example, \phi(\delta_s)=2/m^2 when s are transpositions in S_m, then we have

d(\Psi\circ j_n,h)={m\choose 2}\left(\frac{2}{m^2}\right)^n.

Advertisements