Slides of a talk given at Munster Groups 2019, WIT.

**Abstract: ***It is a folklore theorem that necessary and sufficient conditions for a random walk on a finite group to converge in distribution to the uniform distribution – “to random” – are that the driving probability is not concentrated on a proper subgroup nor the coset of a proper normal subgroup. This is the Ergodic Theorem for Random Walks on Finite Groups. In this talk we will outline the rarely written down proof, and explain why, for example, adjacent transpositions can never mix up a deck of cards. From here we will, in a very leisurely and natural fashion, introduce (and motivate the definition of) finite quantum groups, and random walks on them. We will see how the group algebra of a finite group is the algebra of functions on a finite quantum group. Freslon has very recently proved the Ergodic Theorem in this setting, and we present ongoing work towards an Ergodic Theorem in the more general finite quantum group setting; a result that would generalise both the folklore and group algebra Ergodic Theorems.*

### Like this:

Like Loading...

*Related*

## Leave a comment

Comments feed for this article