You are currently browsing the category archive for the ‘Grinds’ category.

Here we present the proof of assertions 3. and 4. of the following proposition. The proofs of 1. and 2. will be presented in class and here they are assumed. The proofs presented here will not be presented in class.

Proposition 3.1.4 (Calculus of Limits)
Suppose that f and g are two functions \mathbb{R}\rightarrow \mathbb{R}, and that for some a\in\mathbb{R} we have

\lim_{x\rightarrow a}f(x)=p , and  \lim_{x\rightarrow a}g(x)=q.

for some p,q\in\mathbb{R}. Then

  1. \lim_{x\rightarrow a} (f(x)+g(x))=p+q.
  2. If k\in\mathbb{R}, \lim_{x\rightarrow a} kf(x)=kp.
  3. \lim_{x\rightarrow a} (f(x)g(x))=pq.
  4. If q\neq0, \lim_{x\rightarrow a} (f(x)/g(x))=p/q.
  5. If n\in\mathbb{N}, and p>0 then \lim_{x\rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{p}.
  6. Read the rest of this entry »