You are currently browsing the category archive for the ‘Research Updates’ category.

In May 2017 I wrote down some problems that I hoped to look at in my study of random walks on quantum groups. Following work of Amaury Freslon, a number of these questions have been answered. In exchange for solving these problems, Amaury has very kindly suggested some other problems that I can work on. The below hopes to categorise some of these problems and their status.


  • Show that the total variation distance is equal to the projection distance. Amaury has an a third proof. Amaury suggests that this should be true in more generality than the case of \nu being absolutely continuous (of the form \nu(x)=\int_G xa_{\nu} for all x\in C(G) and a unique a_{\nu}\in C(G)). If the Haar state is no longer tracial Amaury’s proof breaks down (and I imagine so do the two others in the link above). Amaury believes this is true in more generality and says perhaps the Jordan decomposition of states will be useful here.
  • Prove the Upper Bound Lemma for compact quantum groups of Kac type. Achieved by Amaury.
  • Attack random walks with conjugate invariant driving probabilitys: achieved by Amaury.
  • Look at quantum generalisations of ‘natural’ random walks and shuffles. Solved is probably too strong a word, but Amaury has started this study by looking at a generalisation of the random transposition shuffle. As I suggested in Seoul, Amaury says: “One important problem in my opinion is to say something about analogues of classical random walks on S_n (for instance the random transpositions or riffle shuffle)”. Amaury notes that “we are blocked by the counit problem. We must therefore seek bounds for other distances. As I suggest in my paper, we may look at the norm of the difference of the transition operators. The \mathcal{L}^2-estimate that I give is somehow the simplest thing one can do and should be thought of as a “spectral gap” estimate. Better norms would be the norms as operators on \mathcal{L}^\infty or even better, the completely bounded norm. However, I have not the least idea of how to estimate this.”

Results to be Improved

  • I have recently received an email from Isabelle Baraquin, a student of Uwe Franz, pointing out a small error in the thesis (a basis-error with the Kac-Paljutkin quantum groups).
  • Recent calculations suggest that the lower bound for the random walk on the dual of S_n is effective at k\sim (n-1)! while the upper bound shows the walk is random at time order n!.  This is still a very large gap but at least the lower bound shows that this walk does converge very slowly.
  • Get a much sharper lower bound for the random walk on the Sekine family of quantum groups studied in Section 5.7. Projection onto the ‘middle’ of the M_n(\mathbb{C}) factor may provide something of use. On mature reflection, recognising that the application of the upper bound lemma is dominated by one set of terms in particular, it should be possible to use cruder but more elegant estimates to get the same upper bound except with lighter calculations (and also a smaller \alpha — see Section 5.7).

More Questions on Random Walks

  • Irreducibility is harder than the classical case (where ‘not concentrated’ on a subgroup is enough). Can anything be said about aperiodicity in the quantum case? (U. Franz).
  • Prove an Ergodic Theorem (Theorem 1.3.2) for Finite Quantum Groups. Extend to Compact Quantum Groups. It is expected that the conditions may be more difficult than the classical case. However, it may be possible to use Diaconis-Van Daele theory to get some results in this direction. It should be possible to completely analyse some examples (such as the Kac-Paljutkin quantum group of order 8).This will involve a study of subgroups of quantum groups as well as normal quantum subgroups and cosets.
  • Look at a random walk on the Sekine quantum groups with an n-dependent driving probability and see if the cut-off phenomenon (Chapter 4) can be detected. This will need good lower bounds for k\ll t_n, some cut-off time.
  • Convolutions Factorisations of the Random Distribution: such a study may prove fruitful in trying to find the Ergodic Theorem. See Section 6.5.
  • Amaury mentions the problem of considering random walks associated to non-central states (in the compact case). “The difficulty is first to build non-central states (I do not have explicit examples at hand but Uwe Franz said he had some) and second to be able to compute their Fourier transform. Then, the computations will certainly be hard but may still be doable.”
  • A study of the Cesaro means: see Section 6.6.
  • Spectral Analysis: it should be possible to derive crude bounds using the spectrum of the stochastic operator. More in Section 6.2.

Future Work (for which I do not yet have the tools to attack)

  • Amaury/Franz Something perhaps more accessible is to investigate quantum homogeneous spaces. The free sphere is a noncommutative analogue of the usual sphere and a quantum homogeneous space for the free orthogonal quantum group. We can therefore define random walks on it and the whole machinery of Gelfand pairs might be available. In particular, Caspers gave a Plancherel theorem for Gelfand pairs of locally compact quantum groups which should apply here yielding an Upper Bound Lemma and then the problem boils down to something which should be close to my computations. There are probably works around this involving Adam Skalski and coauthors.
  • Amaury: If one can prove a more general total variation distance equal to half one norm result, then Amaury suggests one can consider random walks on compact quantum groups which are not of Kac type. The Upper Bound Lemma will then involve matrices Q measuring the modular theory of the Haar state and some (but not all) dimensions in the formulas must be replaced by quantum dimensions. The main problem here is to define explicit central states since there is no Haar-state preserving conditional expectation onto the central algebra. However, there are tools from monoidal equivalence to do this.


Amaury Freslon has put a pre-print on the arXiv, Cut-off phenomenon for random walks on free orthogonal quantum groups, that answers so many of these questions, some of which appeared as natural further problems in my PhD thesis.

It really is a fantastic paper and I am delighted to see my PhD work cited: it appears that while I may have taken some of the low hanging fruit, Amaury has really extended these ideas and has developed some fantastic examples: all beyond my current tools.

This pre-print gives me great impetus to draft a pre-print of my PhD work, hopefully for publication. I am committed to improving my results and presentation, and Amaury’s paper certainly provides some inspiration is this direction.

As things stand I do not have to tools to develop results as good as Amaury’s. Therefore I am trying to develop my understanding of compact quantum groups and their representation theory. Afterwards I can hopefully study some of the remaining further problems mentioned in the thesis.

As suggested by Uwe Franz, representation theoretic methods (such as presented by Diaconis (1988) for the classical case), might be useful for analysing random walks on quantum homogeneous spaces.

Just back from a great workshop at Seoul National University, I am just going to use this piece to outline in a relaxed manner my key goals for my work on random walks on quantum groups for the near future.

In the very short term I want to try and get a much sharper lower bound for my random walk on the Sekine family of quantum groups. I believe the projection onto the ‘middle’ of the M_n(\mathbb{C}) might provide something of use. On mature reflection, recognising that the application of the upper bound lemma is dominated by one set of terms in particular, it should be possible to use cruder but more elegant estimates to get the same upper bound except with lighter calculations (and also a smaller \alpha — see Section 5.7).

I also want to understand how sharp (or otherwise) the order n^n convergence for the random walk on the dual of S_n is — n^n sounds awfully high. Furthermore it should be possible to get a better lower bound that what I have.

It should also be possible to redefine the quantum total variation distance as a supremum over projections \sim subsets via G \supset S\leftrightarrow \mathbf{1}_S. If I can show that for a positive linear functional \rho that |\rho(a)|\leq \rho(|a|) then using these ideas I can. More on this soon hopefully. No, this approach won’t work. (I have since completed this objective with some help: see here).

The next thing I might like to do is look at a random walk on the Sekine quantum groups with an n-dependent driving probability and see if I can detect the cut-off phenomenon (Chapter 4). This will need good lower bounds for k\ll t_n, some cut-off time.

Going back to the start, the classical problem began around 1904 with the question of Markov:

Which card shuffles mix up a deck of cards and cause it to ‘go random’?

For example, the perfect riffle shuffle does not mix up the cards at all while a riffle shuffle done by an amateur will.

In the context of random walks on classical groups this question is answered by the Ergodic Theorem 1.3.2: when the driving probability is not concentrated on a subgroup (irreducibility) nor the coset of a normal subgroup (aperiodicity).

Necessary and sufficient conditions on the driving probability \nu\in M_p(\mathbb{G}) for the random walk on a quantum group to converge to random are required. It is expected that the conditions may be more difficult than the classical case. However, it may be possible to use Diaconis-Van Daele theory to get some results in this direction. It should be possible to completely analyse some examples (such as the Kac-Paljutkin quantum group of order 8).

This will involve a study of subgroups of quantum groups as well as normal quantum subgroups.

It should be straightforward to extend the Upper Bound Lemma (Lemma 5.3.8) to the case of compact Kac algebras. Once that is done I will want to look at quantum generalisations of ‘natural’ random walks and shuffles.

I intend also to put the PhD thesis on the Arxiv. After this I have a number of options as regard to publishing what I have or maybe waiting a little while until I solve the above problems — this will all depend on how my further study progresses.


Slides of a talk given at the Topological Quantum Groups and Harmonic Analysis workshop at Seoul National University, May 2017.

Abstract A central tool in the study of ergodic random walks on finite groups is the Upper Bound Lemma of Diaconis & Shahshahani. The Upper Bound Lemma uses the representation theory of the group to generate upper bounds for the distance to random and thus can be used to determine convergence rates for ergodic walks. These ideas are generalised to the case of finite quantum groups.

After a long time I have finally completed my PhD studies when I handed in my hardbound thesis (a copy of which you can see here).

It was a very long road but thankfully now the pressure is lifted and I can enjoy my study of quantum groups and random walks thereon for many years to come.

I have finally finished the first draft of my PhD thesis. My advisor Dr Stephen Wills is presently reading through it and will get back to me with his comments in the next few weeks. The project was successful in that I managed to prove the Diaconis-Shahshahani Upper Bound Lemma for finite quantum groups… how successful my application of the Lemma to concrete examples is probably open to debate. First draft of abstract and introduction — without references — below the fold.

Read the rest of this entry »

Let \mathbb{G} be a finite quantum group described by A=\mathcal{C}(\mathbb{G}) with an involutive antipode (I know this is true is the commutative or cocommutative case. I am not sure at this point how restrictive it is in general. The compact matrix quantum groups have this property so it isn’t a terrible restriction.) S^2=I_A. Under the assumption of finiteness, there is a unique Haar state, h:A\rightarrow \mathbb{C} on A.

Representation Theory

A representation of \mathbb{G} is a linear map \kappa:V\rightarrow V\otimes A that satisfies

\left(\kappa\otimes I_A\right)\circ\kappa =\left(I_V\otimes \Delta\right)\circ \kappa\text{\qquad and \qquad}\left(I_V\otimes\varepsilon\right)\circ \kappa=I_V.

The dimension of \kappa is given by \dim\,V. If V has basis \{e_i\} then we can define the matrix elements of \kappa by

\displaystyle\kappa\left(e_j\right)=\sum_i e_i\otimes\rho_{ij}.

One property of these that we will use it that \varepsilon\left(\rho_{ij}\right)=\delta_{i,j}.

Two representations \kappa_1:V_1\rightarrow V_1\otimes A and \kappa_2:V_2\rightarrow V_2\otimes A are said to be equivalent, \kappa_1\equiv \kappa_2, if there is an invertible intertwiner between them. An intertwiner between \kappa_1 and \kappa_2 is a map T\in L\left(V_1,V_2\right) such that

\displaystyle\kappa_2\circ T=\left(T\otimes I_A\right)\circ \kappa_1.

We can show that every representation is equivalent to a unitary representation.

Timmermann shows that if \{\kappa_\alpha\}_{\alpha} is a maximal family of pairwise inequivalent irreducible representation that \{\rho_{ij}^\alpha\}_{\alpha,i,j} is a basis of A. When we refer to “the matrix elements” we always refer to such a family. We define the span of \{\rho_{ij}\} as \mathcal{C}\left(\kappa\right), the space of matrix elements of \kappa.

Given a representation \kappa, we define its conjugate, \overline{\kappa}:\overline{V}\rightarrow\overline{V}\otimes A, where \overline{V} is the conjugate vector space of V, by

\displaystyle\overline{\kappa}\left(\bar{e_j}\right)=\sum_i \bar{e_i}\otimes\rho_{ij}^*,

so that the matrix elements of \overline{\kappa} are \{\rho_{ij}^*\}.

Timmermann shows that the matrix elements have the following orthogonality relations:

  • If \alpha and \beta are inequivalent then h\left(a^*b\right)=0, for all a\in \mathcal{C}\left(\kappa_\alpha\right) and b\in\mathcal{C}\left(\kappa_\beta\right).
  • If \kappa is such that the conjugate, \overline{\kappa}, is equivalent to a unitary matrix (this is the case in the finite dimensional case), then we have

\displaystyle h\left(\rho_{ij}^*\rho_{kl}\right)=\frac{\delta_{i,k}\delta_{j,l}}{d_\alpha}.

This second relation is more complicated without the S^2=I_A assumption and refers to the entries and trace of an intertwiner F from \kappa to the coreprepresention with matrix elements \{S^2\left(\rho_{ij}\right)\}. If S^2=I_A, then this intertwiner is simply the identity on V and so the the entries \left[F\right]_{ij}=\delta_{i,j} and the trace is d=\dim V.

Denote by \text{Irr}(\mathbb{G}) the set of unitary equivalence classes of irreducible unitary representations of \mathbb{G}. For each \alpha\in\text{Irr}(\mathbb{G}), let \kappa_\alpha:V_{\alpha}\rightarrow V_{\alpha}\otimes A be a representative of the class \alpha where V_\alpha is the finite dimensional vector space on which \kappa_\alpha acts.

Diaconis-Van Daele Fourier Theory

Read the rest of this entry »

The following runs a thread through what I’ve looked at over the past year: Progression Report.

I have continued to work through Murphy*+algebras+and+operator+theory&h

I managed to get through two sections last week: Compact Hilbert Space Operators and The Spectral Theorem. I also have 9 of 12 chapter 2 exercises completed. I have been writing my study up here and this is proving fruitful on three counts:

  1. I can put questions in red for my supervisor to see
  2. I am not happy putting up something on this page that I haven’t justified to myself. This means I have to fill in some extra steps (in blue)
  3. I should have a nice set of notes to peruse should I need them

Unfortunately this week will be mostly concerned with preparing lectures for two modules that I will be lecturing in CIT:



I have continued to work through Murphy*+algebras+and+operator+theory&h

Before the Christmas break I finished off the chapter 1 exercises.

Chapter 2: C*-Algebras and Hilbert Space Operators.

2.1 C*-Algebras

Initially we defined a C*-algebra, A, as a complete normed algebra, together with a conjugate-linear involution * that satisfies the C*-equation:

\|a^*a\|=\|a\|^2, \forall\,a\in A

Self-adjoint or Hermitian elements are defined to have the property a^*=a. As a consequence of this, and the C*-equation, the spectral radius of a self-adjoint element, \nu(a), is equal to its norm, \|a\|. As a corollary of this, of all the norms that can be put on the *-algebra, only one makes it into a C*-algebra – i.e. satisfying the C*-equation.

In the previous chapter we have seen that an algebra, A, can be unitised to form a new algebra, \tilde{A}, which contains A as a subspace. In general, the norm got by extending the norm on A to a norm on \tilde{A} does not make \tilde{A} into a C*-algebra. However Theorem 2.1.6 shows that there does exist a (unique) norm on \tilde{A} making it a C*-algebra. In many examples we may now assume that a general C*-algebra is unital – replacing it with the unique unitisation, \tilde{A}, if necessary.

One such result which depends on this fact is that the the spectrum of a self-adjoint element is real.

A central result in this chapter is that all abelian C*-algebras are C_0(X), for some locally compact Hausdorff space, X. In fact X is the character space \Phi(A) (as with Belton, this is via the Gelfand transformation). This identification allows the development of the powerful functional calculus. Briefly, if a is a normal element of a C*-algebra A, (a^*a=aa^*), and z is the inclusion map from \sigma(a)\rightarrow \mathbb{C}, then there exists a unique *-homomorphism \varphi:C(\sigma(a))\rightarrow A such that \varphi(z)=a. This unique *-homorphism is called the functional calculus at a. This particular section ended with the Belton result that if X is a compact Hausdorff space, \Phi(C(X))\cong X (via x\mapsto \delta_x).

2.2 Positive Elements of C*-Algebras

This section introduces a partial order on A_{\text{SA}} (the set of self-adjoint elements of A). Namely, an element a\in A_{\text{SA}} is positive if \sigma(a)\subset \mathbb{R}^+. The partial order is defined in the obvious way.

As a consequence of the Gelfand transformation and the functional calculus, we can show that positive elements of a C*-algebra possess unique positive square roots.  Another prominent result is that for an arbitrary element a\in Aa^*a is positive.

2.3 Operators and Sesquilinear Forms

As a first move, we prove that bounded operators on Hilbert spaces have adjoints. Next projections are examined and partial isometries are examined. This leads onto the polar decomposition theorem. Namely, if T is a continuous linear operator on a Hilbert space H, there exists a unique partial isometry S such that T=S|T|; where |T|=(T^*T)^{1/2}. The rest of the section focusses on the connection between operators and sesquilinear forms.

2.4 Compact Hilbert Space Operators

At first this chapter looks at some of the basic properties of these objects – e.g. if T is compact so are |T| and T^*. Thus K(H) is self-adjoint and thus a C*-algebra (it is a closed ideal in B(H)). We see that normal compact operators are diagonalisable.

We look at the finite rank operators, F(H) and see that they are dense in K(H). Next the operator x\otimes y is examined:

(x\otimes y)(z)=\langle z,y\rangle x

These are rank-one, and the x\otimes x are rank-one projections if x is a unit vector. This leads on to the fact that F(H) is linearly spanned by these rank-one projections.

This is a synopsis of what I covered up until recently (up to p.56). As an experiment I am attempting to do my study of Murphy by way of fully presenting the details on this webpage. I am unsure of whether or not this is too time consuming. Presently I am on page 63 and I will have to cover the rest of the chapter material (10 pages) in one day or similar if I am going to consider this tactic feasible.

%d bloggers like this: